7 research outputs found

    DNA-like class R inhibitory oligonucleotides (INH-ODNs) preferentially block autoantigen-induced B-cell and dendritic cell activation in vitro and autoantibody production in lupus-prone MRL-Faslpr/lpr mice in vivo

    Get PDF
    INTRODUCTION. B cells have many different roles in systemic lupus erythematosus (SLE), ranging from autoantigen recognition and processing to effector functions (for example, autoantibody and cytokine secretion). Recent studies have shown that intracellular nucleic acid-sensing receptors, Toll-like receptor (TLR) 7 and TLR9, play an important role in the pathogenesis of SLE. Dual engagement of rheumatoid factor-specific AM14 B cells through the B-cell receptor (BCR) and TLR7/9 results in marked proliferation of autoimmune B cells. Thus, strategies to preferentially block innate activation through TLRs in autoimmune B cells may be preferred over non-selective B-cell depletion. METHODS. We have developed a new generation of DNA-like compounds named class R inhibitory oligonucleotides (INH-ODNs). We tested their effectiveness in autoimmune B cells and interferon-alpha-producing dendritic cells in vitro and in lupus-prone MRL-Faslpr/lpr mice in vivo. RESULTS. Class R INH-ODNs have 10- to 30-fold higher inhibitory potency when autoreactive B cells are synergistically activated through the BCR and associated TLR7 or 9 than when stimulation occurs via non-BCR-engaged TLR7/9. Inhibition of TLR9 requires the presence of both CCT and GGG triplets in an INH-ODN, whereas the inhibition of the TLR7 pathway appears to be sequence-independent but dependent on the phosphorothioate backbone. This difference was also observed in the MRL-Faslpr/lpr mice in vivo, where the prototypic class R INH-ODN was more effective in curtailing abnormal autoantibody secretion and prolonging survival. CONCLUSIONS. The increased potency of class R INH-ODNs for autoreactive B cells and dendritic cells may be beneficial for lupus patients by providing pathway-specific inhibition yet allowing them to generate protective immune response when needed.National Institutes of Health (AI047374, AI064736); Alliance for Lupus Researc

    Ionizing radiation and hematopoietic malignancies: Altering the adaptive landscape

    No full text
    Somatic evolution, which underlies tumor progression, is driven by two essential components: (1) diversification of phenotypes through heritable mutations and epigenetic changes and (2) selection for mutant clones which possess higher fitness. Exposure to ionizing radiation (IR) is highly associated with increased risk of carcinogenesis. This link is traditionally attributed to causation of oncogenic mutations through the mutagenic effects of irradiation. On the other hand, potential effects of irradiation on altering fitness and increasing selection for mutant clones are frequently ignored. Recent studies bring the effects of irradiation on fitness and selection into focus, demonstrating that IR exposure results in stable reductions in the fitness of hematopoietic stem and progenitor cell populations. These reductions of fitness are associated with alteration of the adaptive landscape, increasing the selective advantages conferred by certain oncogenic mutations. Therefore, the link between irradiation and carcinogenesis might be more complex than traditionally appreciated: while mutagenic effects of irradiation should increase the probability of occurrence of oncogenic mutations, IR can also work as a tumor promoter, increasing the selective expansion of clones bearing mutations which become advantageous in the irradiation-altered environment, such as activated mutations in Notch1 or disrupting mutations in p53

    Zinc Finger Protein 521 Regulates Early Hematopoiesis through Cell-Extrinsic Mechanisms in the Bone Marrow Microenvironment

    No full text
    Zinc finger protein 521 (ZFP521), a DNA-binding protein containing 30 Kruppel-like zinc fingers, has been implicated in the differentiation of multiple cell types, including hematopoietic stem and progenitor cells (HSPC) and B lymphocytes. Here, we report a novel role for ZFP521 in regulating the earliest stages of hematopoiesis and lymphoid cell development via a cell-extrinsic mechanism. Mice with inactivated Zfp521 genes (Zfp521(-/-)) possess reduced frequencies and numbers of hematopoietic stem and progenitor cells, common lymphoid progenitors, and B and T cell precursors. Notably, ZFP521 deficiency changes bone marrow microenvironment cytokine levels and gene expression within resident HSPC, consistent with a skewing of hematopoiesis away from lymphopoiesis. These results advance our understanding of ZFP521s role in normal hematopoiesis, justifying further research to assess its potential as a target for cancer therapies.Funding Agencies|National Institutes of Health [R01AI081878, R01AI098417, R21AI115696, R01CA117907, K01DK098315]; Wendy Siegel Fund for Leukemia and Cancer Research; Mary Miller and Charlotte Fonfara-Larose Leukemia and Down Syndrome Research Fund; NIH Institutional National Service Award [2T32AI074491]; NIH [F31HL138754]; Victor W. Bolie and Earleen D. Bolie Graduate Scholarship Fund; Swedish Cancer Foundation; Swedish Medical Research Council</p
    corecore