10 research outputs found

    A comprehensive assessment of demographic, environmental, and host genetic associations with gut microbiome diversity in healthy individuals.

    Get PDF
    BACKGROUND: The gut microbiome is an important determinant of human health. Its composition has been shown to be influenced by multiple environmental factors and likely by host genetic variation. In the framework of the Milieu Intérieur Consortium, a total of 1000 healthy individuals of western European ancestry, with a 1:1 sex ratio and evenly stratified across five decades of life (age 20-69), were recruited. We generated 16S ribosomal RNA profiles from stool samples for 858 participants. We investigated genetic and non-genetic factors that contribute to individual differences in fecal microbiome composition. RESULTS: Among 110 demographic, clinical, and environmental factors, 11 were identified as significantly correlated with α-diversity, ß-diversity, or abundance of specific microbial communities in multivariable models. Age and blood alanine aminotransferase levels showed the strongest associations with microbiome diversity. In total, all non-genetic factors explained 16.4% of the variance. We then searched for associations between > 5 million single nucleotide polymorphisms and the same indicators of fecal microbiome diversity, including the significant non-genetic factors as covariates. No genome-wide significant associations were identified after correction for multiple testing. A small fraction of previously reported associations between human genetic variants and specific taxa could be replicated in our cohort, while no replication was observed for any of the diversity metrics. CONCLUSION: In a well-characterized cohort of healthy individuals, we identified several non-genetic variables associated with fecal microbiome diversity. In contrast, host genetics only had a negligible influence. Demographic and environmental factors are thus the main contributors to fecal microbiome composition in healthy individuals. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT01699893

    Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines.

    Get PDF
    Humoral immune responses to infectious agents or vaccination vary substantially among individuals, and many of the factors responsible for this variability remain to be defined. Current evidence suggests that human genetic variation influences (i) serum immunoglobulin levels, (ii) seroconversion rates, and (iii) intensity of antigen-specific immune responses. Here, we evaluated the impact of intrinsic (age and sex), environmental, and genetic factors on the variability of humoral response to common pathogens and vaccines. We characterized the serological response to 15 antigens from common human pathogens or vaccines, in an age- and sex-stratified cohort of 1000 healthy individuals (Milieu Intérieur cohort). Using clinical-grade serological assays, we measured total IgA, IgE, IgG, and IgM levels, as well as qualitative (serostatus) and quantitative IgG responses to cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1 and 2, varicella zoster virus, Helicobacter pylori, Toxoplasma gondii, influenza A virus, measles, mumps, rubella, and hepatitis B virus. Following genome-wide genotyping of single nucleotide polymorphisms and imputation, we examined associations between ~ 5 million genetic variants and antibody responses using single marker and gene burden tests. We identified age and sex as important determinants of humoral immunity, with older individuals and women having higher rates of seropositivity for most antigens. Genome-wide association studies revealed significant associations between variants in the human leukocyte antigen (HLA) class II region on chromosome 6 and anti-EBV and anti-rubella IgG levels. We used HLA imputation to fine map these associations to amino acid variants in the peptide-binding groove of HLA-DRβ1 and HLA-DPβ1, respectively. We also observed significant associations for total IgA levels with two loci on chromosome 2 and with specific KIR-HLA combinations. Using extensive serological testing and genome-wide association analyses in a well-characterized cohort of healthy individuals, we demonstrated that age, sex, and specific human genetic variants contribute to inter-individual variability in humoral immunity. By highlighting genes and pathways implicated in the normal antibody response to frequently encountered antigens, these findings provide a basis to better understand disease pathogenesis. ClinicalTrials.gov , NCT01699893

    Visual masking deficits in schizophrenia: a view into the genetics of the disease through an endophenotype

    No full text
    Abstract Schizophrenia is a severe psychiatric disorder determined by a complex mixture of genetic and environmental factors. To better understand the contributions of human genetic variations to schizophrenia, we performed a genome-wide association study (GWAS) of a highly sensitive endophenotype. In this visual masking endophenotype, two vertical bars, slightly shifted in the horizontal direction, are briefly presented (vernier offset). Participants are asked to indicate the offset direction of the bars (either left or right). The bars are followed by a grating mask, which makes the task both spatially and temporally challenging. The inter-stimulus interval (ISI) between the vernier and the mask was determined in 206 patients with schizophrenia, 109 first-order relatives, and 143 controls. Usually, in GWAS studies, patients are compared to controls (i.e., a binary task) without considering the large differences in performance between patients and controls, as it occurs in many paradigms. The masking task allows for a particularly powerful analysis because the differences in ISI within the patient population are large. We genotyped all participants and searched for associations between human polymorphisms and the masking endophenotype using a linear mixed model. We did not identify any genome-wide significant associations (p < 5 × 10−8), indicating that common variants with strong effects are unlikely to contribute to the large inter-group differences in visual masking. However, we found significant differences in polygenetic risk scores (PRS) between patients and controls, and relatives and controls

    Brief communication: An autonomous UAV for catchment-wide monitoring of a debris flow torrent

    No full text
    Debris flows threaten communities in mountain regions worldwide. Combining modern photogrammetric processing with autonomous unoccupied aerial vehicle (UAV) flights at sub-weekly intervals allows mapping of sediment dynamics in a debris flow catchment. This provides important information for sediment disposition that pre-conditions the catchment for debris flow occurrence. At the Illgraben debris flow catchment in Switzerland, our autonomous UAV launched nearly 50 times in the snow-free periods in 2019-2021 with typical flight intervals of 2-4 d, producing 350-400 images every flight. The observed terrain changes resulting from debris flows exhibit preferred locations of erosion and deposition, including memory effects as previously deposited material is preferentially removed during subsequent debris flows. Such data are critical for the validation of geomorphological process models. Given the remote terrain, the mapped short-term erosion and deposition structures are difficult to obtain with conventional measurements. The proposed method thus fills an observational gap, which ground-based monitoring and satellite-based remote sensing cannot fill as a result of limited access, reaction time, spatial resolution, or involved costs.ISSN:1561-8633ISSN:1684-998

    Additional file 2: of Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines

    No full text
    Figure S1. Principal Component Analysis. Figure S2. Distribution of serological variables, and clinical thresholds. Figure S3. Seroprevalence data. Figure S4. Impact of non-genetic factors on serostatus. Figure S5. Evolution of serostatus with age and sex. Figure S6. Correlations between age and IgG specific to Rubella and T. gondii. Figure S7. QQ plots for logistic regressions preformed in the study. Figure S8. QQ plots for linear regressions preformed on total Ig levels. Figure S9. QQ plots for linear regressions preformed for pathogen-specific IgG levels. Figure S10. QQ plots for burden testing analyses preformed for all binary phenotypes. Figure S11. QQ plots for burden testing analyses preformed for total Ig levels. Figure S12. QQ plots for burden testing analyses preformed for pathogen-specific IgG levels. (DOCX 89996 kb

    Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines

    No full text
    Background: Humoral immune responses to infectious agents or vaccination vary substantially among individuals, and many of the factors responsible for this variability remain to be defined. Current evidence suggests that human genetic variation influences (i) serum immunoglobulin levels, (ii) seroconversion rates, and (iii) intensity of antigen-specific immune responses. Here, we evaluated the impact of intrinsic (age and sex), environmental, and genetic factors on the variability of humoral response to common pathogens and vaccines. Methods: We characterized the serological response to 15 antigens from common human pathogens or vaccines, in an age- and sex-stratified cohort of 1000 healthy individuals (Milieu Intérieur cohort). Using clinical-grade serological assays, we measured total IgA, IgE, IgG, and IgM levels, as well as qualitative (serostatus) and quantitative IgG responses to cytomegalovirus, Epstein-Barr virus, herpes simplex virus 1 and 2, varicella zoster virus, Helicobacter pylori, Toxoplasma gondii, influenza A virus, measles, mumps, rubella, and hepatitis B virus. Following genome-wide genotyping of single nucleotide polymorphisms and imputation, we examined associations between ~5 million genetic variants and antibody responses using single marker and gene burden tests. Results: We identified age and sex as important determinants of humoral immunity, with older individuals and women having higher rates of seropositivity for most antigens. Genome-wide association studies revealed significant associations between variants in the human leukocyte antigen (HLA) class II region on chromosome 6 and anti-EBV and anti-rubella IgG levels. We used HLA imputation to fine map these associations to amino acid variants in the peptide-binding groove of HLA-DRβ1 and HLA-DPβ1, respectively. We also observed significant associations for total IgA levels with two loci on chromosome 2 and with specific KIR-HLA combinations. Conclusions: Using extensive serological testing and genome-wide association analyses in a well-characterized cohort of healthy individuals, we demonstrated that age, sex, and specific human genetic variants contribute to inter-individual variability in humoral immunity. By highlighting genes and pathways implicated in the normal antibody response to frequently encountered antigens, these findings provide a basis to better understand disease pathogenesis
    corecore