15 research outputs found
Warm beach, warmer turtles: Using drone-mounted thermal infrared sensors to monitor sea turtle nesting activity
For decades sea turtle projects around the world have monitored nesting females using labor-intensive human patrolling techniques. Here we describe the first empirical testing of a drone-mounted thermal infrared sensor for nocturnal sea turtle monitoring; on the Osa peninsula in Costa Rica. Preliminary flights verified that the drone could detect similar sea turtle activities as identified by on-the-ground human patrollers â such as turtles, nests and tracks. Drone observers could even differentiate tracks of different sea turtle species, detect sea turtle hatchlings, other wildlife, and potential poachers. We carried out pilot flights to determine optimal parameters for detection by testing different thermal visualization modes, drone heights, and gimbal angles. Then, over seven nights, we set up a trial to compare the thermal drone and operatorsâ detections with those observed by traditional patrollers. Our trials showed that thermal drones can record more information than traditional sea turtle monitoring methods. The drone and observer detected 20% more sea turtles or tracks than traditional ground-based patrolling (flights and patrols carried out across the same nights at the same time and beach). In addition, the drone operator detected 39 other animals/predators and three potential poachers that patrollers failed to detect. Although the technology holds great promise in being able to enhance detection rates of nesting turtles and other beach activity, and in helping to keep observers safer, we detail challenges and limiting factors; in drone imagery, current cost barriers, and technological advances that need to be assessed and developed before standardized methodologies can be adopted. We suggest potential ways to overcome these challenges and recommend how further studies can help to optimize thermal drones to enhance sea turtle monitoring efforts worldwide
Flight speed and time of day heavily influence rainforest canopy wildlife counts from drone-mounted thermal camera surveys
The payload size and commercial availability of thermal infrared cameras mounted on drones has initiated a new wave in the potential for conservationists and researchers to survey, count and detect wildlife, even the most complex of habitats such as forest canopies. However, several fundamental design and methodological questions remain to be tested before standardized monitoring approaches can be broadly adopted. We test the impact of both the speed of drone flights and diel flight period on tropical rainforest canopy wildlife detections. Detection and identification rates differ between both flight speeds and diel time. Overallâ~â36% more detections were made during slower flight speeds, along with a greater ability to categorize taxonomic groups. Flights conducted at 3am resulted in ~â67% more detections compared to flights conducted at 7am (the diel period with the lowest detection rate). However, 112% more detections could be identified to taxonomic group in 7am flights compared with 3am flights â due to the types of wildlife being identified and the assistance of the RGB camera. Although, this technology holds great promise for carrying out surveys in structurally complex and poorly known ecosystems like forest canopies, there is more to do in further methodological testing, and building automated post-processing systems. Our results suggest that drone studies in the same habitat types, with the same animal densities, could be off by multiples if flown during different times and/or at different speeds. The difference could be an alarming 5-6x variation in animal detections or identification depending on changes in these two factors alone
Secondary forest is utilized by Great Curassows (Crax rubra) and Great Tinamous (Tinamus major) in the absence of hunting
Deforestation and hunting are the leading human-driven disturbances causing population declines of the vulnerable Great Curassow (Crax rubra) and the near threatened Great Tinamou (Tinamus major). These threats typically co-occur, with synergistic effects. We investigated habitat use of Great Curassows and Great Tinamous in the Matapalo corridor of the Osa Peninsula, southwest Costa Rica, where they are not hunted, to understand whether disturbed habitats can be suitable for these species. We analyzed camera trap data from 56 locations and 5579 trapping days using occupancy modeling. We obtained 195 independent captures of Great Curassows at 33 of 56 locations (59%) and 429 independent captures of Great Tinamous at 37 of 56 locations (66%). Great Curassow occupancy did not vary with habitat type but was negatively influenced by distance from roads and by elevation; detection probability varied with habitat type. Great Tinamou occupancy probability was principally related to habitat type; primary, secondary and plantation forest areas all displayed high occupancy probabilities, but occupancy of agricultural land was low. Our work suggests that secondary-growth forests can offer valuable complementary habitat to assist in the recovery of these declining species, at least when hunting is controlled and intact forests are nearby
Recovery of dung beetle biodiversity and traits in a regenerating rainforest; a case study from Costa Rica's Osa Peninsula
Dung beetles are frequently used to assess tropical biodiversity patterns and recovery in humanâmodified forests. We conducted a comprehensive dung beetle survey (coprophagous and necrophagous communities) within five habitat types, across a landâuse gradient, in the ecologically biodiverse Osa Peninsula, located in Costa Rica's south Pacific.
In addition to assessing species richness, abundance, and biomass, we also assessed community level traits and speciesâspecific responses using a generalised joint attribute modelling approach.
We found that under favourable conditions (40â50âyears of regeneration, close proximity to contiguous oldâgrowth forest and control of poaching), secondary rainforest recovered similar levels of species richness, and key traits of oldâgrowth forest dung beetle communities. However, at the communityâlevel, dung beetle abundance, richness, biomass, and diversity varied between habitat types of different anthropogenic disturbance and landâuse.
Generally, the carrion beetle community did not recover as well as the dung beetle community and the abundance of dung beetles was a third lower in naturally regenerating secondary forest compared with old growth. Regenerating secondary growth and plantation forests showed community compositions similar to old growth forests, while open and fragmented habitats had degraded and impoverished levels of dung beetle biodiversity.
Overall, the levels of dungâbeetle biodiversity detected are encouraging for naturally regenerating secondary forest, suggesting a high potential value of these areas to buffer the pressure of deforestation and habitat alteration on remaining oldâgrowth tropical forests
Disappearance of an ecosystem engineer, the white-lipped peccary (Tayassu pecari), leads to density compensation and ecological release
Given the rate of biodiversity loss, there is an urgent need to understand community-level responses to extirpation events, with two prevailing hypotheses. On one hand, the loss of an apex predator leads to an increase in primary prey species, triggering a trophic cascade of other changes within the community, while density compensation and ecological release can occur because of reduced competition for resources and absence of direct aggression. White-lipped peccary (Tayassu pecariâWLP), a species that typically co-occurs with collared peccary (Pecari tajacu), undergo major population crashesâoften taking 20 to 30-years for populations to recover. Using a temporally replicated camera trapping dataset, in both a pre- and post- WLP crash, we explore how WLP disappearance alters the structure of a Neotropical vertebrate community with findings indicative of density compensation. White-lipped peccary were the most frequently detected terrestrial mammal in the 2006â2007 pre-population crash period but were undetected during the 2019 post-crash survey. Panthera onca (jaguar) camera trap encounter rates declined by 63% following the WLP crash, while collared peccary, puma (Puma concolor), red-brocket deer (Mazama americana) and short-eared dog (Atelocynus microtis) all displayed greater encounter rates (490%, 150%, 280%, and 500% respectively), and increased in rank-abundance. Absence of WLP was correlated with ecological release changes in habitat-use for six species, with the greatest increase in use in the preferred floodplain habitat of the WLP. Surprisingly, community-weighted mean trait distributions (body size, feeding guild and nocturnality) did not change, suggesting functional redundancy in diverse tropical mammal assemblages
More than one way to count a cat: estimation of ocelot population density using frameworks for marked and unmarked species
Camera-traps have become one of the most common tools for studying wildlife abundance and population density. Traditionally, absolute density could be estimated only for species with individual markings, using captureârecapture frameworks. Newer methods allow to estimate density of unmarked species, but these have yet to be thoroughly tested and compared against captureârecapture methods. To make this comparison requires an identifiable species, for which both types of frameworks can be used. Here, we estimate the population density of ocelots (Leopardus pardalis) in the Osa peninsula, Costa Rica, comparing methods for marked and unmarked species. We deployed camera-trap grids between 2017 and 2019, identified individuals and determined spatially resolved individual detection histories, station-specific detection frequencies and times to first detection. Estimates obtained with methods for unmarked species (Time-to-Event and Random Encounter Model) varied widely among surveys, from 11 to 169 individuals/100 km2, and were significantly different from spatial captureârecapture estimates (28.1 individuals/100 km2). Differences were largely driven by the non-random placement of cameras on human-made trails, which inflated the detection frequency. Maximizing the number of encounters benefits methods based on captureârecapture but is detrimental for methods based on random detections. Our results highlight the incompatibility between surveys designed for captureârecapture analyses, and those that assume random movement of animals. For recently developed unmarked species methods to be used for a larger and more diverse set of species, it is necessary to further test and define the requirements and factors that affect their calculations. This information will ultimately allow for a greater diversity of population and community studies
Spider monkeys rule the roost: Ateline sleeping sites influence rainforest heterogeneity
: The sleeping site behavior of Ateline primates has been of interest since the 1980s, yet limited focus has been given to their influence upon other rainforest species. Here, we use a combination of arboreal and terrestrial camera traps, and dung beetle pitfall traps, to characterize spider monkey sleeping site use and quantify the impact of their associated latrines on terrestrial vertebrate and dung beetle activity. We also characterize the physical characteristics of the sleeping sites and the floristic and soil composition of latrines beneath them. Spider monkey activity at sleeping sites peaked at dawn and dusk and group composition varied by sex of the adults detected. The habitat-use of terrestrial fauna (vertebrates and dung beetles) differed between latrine sites and non-latrine controls, underpinned by species-specific changes in the relative abundance of several seed-dispersing species (such as paca and great curassow). Seedling density was higher in latrines than in non-latrine controls. Although most soil properties were similar between latrines and controls, potassium and manganese concentrations were different. These results suggest that spider monkey sleeping site fidelity leads to a hotspot of ecological activity in latrines and downstream impacts on rainforest floristic composition and diversity
Scouts vs Usurpers: alternative foraging strategies facilitate coexistence between Neotropical Cathartid Vultures
Understanding how diverse assemblages of scavengers can coexist on shared ecological resources is a fundamental challenge in community ecology. However, current approaches typically focus on behaviour at carcass provisioning sites, missing how important differences in movement behaviour and foraging strategies can facilitate sympatric species coexistence. Such information is particularly important for vultures â obligate scavengers representing the most endangered avian foraging guild. Their loss from ecosystems can trigger trophic cascades, mesopredator release and disease outbreaks. We provide the first-ever analyses of GPS location data from wild King Vultures Sarcoramphus papa and Greater Yellow-headed Vultures Cathartes melambrotus, coupled with trait data (from both wild-living and museum specimens) and visitation data from camera traps deployed at provisioned carcasses, to characterize vulture flight behaviour and strategies in the Peruvian Amazon. We found marked species differences in several key movement characteristics, including: King Vultures having home-ranges five times larger, average flight heights four times greater and ground speeds 40% faster than those of Greater Yellow-headed Vultures. Despite these differences, both species flew similar distances each day (on average), probably due to King Vultures taking 50% fewer flights and spending 40% less time in the air per day. Consistent with these patterns, King Vulture body mass was more than double that of the Greater Yellow-headed Vulture, with a substantially larger hang wing index (a measure of long-distance flight efficiency). At carcasses, Greater Yellow-headed Vultures typically arrived first but were rapidly outnumbered by both King and Black Vultures Coragyps atratus. We find that the movement behaviour of obligate apex scavengers in the western Amazon is linked to their ability to coexist â Greater Yellow-headed Vultures, a smaller stature âscoutingâ species adapted to fly low, forage early and arrive first at carcasses, are ultimately displaced by larger-bodied, wider ranging King Vultures at large ephemeral carrion resources. Expansion of future GPS tracking initiatives could facilitate the exploration of direct facultative interactions from animal movement data and give further insight into how diverse communities assemble and interact
Identifying wildlife road crossing mitigation sites using a multi-data approach - a case study from southwestern Costa Rica
Roads are one of the most widespread structures that drive habitat loss and fragmentation. But they also restrict animal movement and drive landscape-level impacts on biodiversity. The South Pacific of Costa Rica is known for its high levels of biodiversity, but little has been done to reduce road impacts upon wildlife communities. To understand these impacts and advise on possible mitigation action, we used three key data approaches: 1. Camera traps, to survey wildlife activity along two major road sections that dissect the region's protected areas and biological corridors. Seventy-eight camera traps were deployed in secondary forest patches at different distances (between 200 m and 1 km) from the roads for six months and covariates were collected to explain the patterns found. 2. Citizen science data extracted from iNaturalist to identify roadkill âhotspotsâ along the roads. And 3. Circuitscape analysis, to assess how landscape structure could influence animal movement. Camera traps recorded 30 terrestrial species. Ocelots and agoutis displayed a negative effect of distance from protected area, while the Apex predators displayed a positive effect toward higher forest cover and vegetation density. Circuitscape analysis showed high connectivity throughout most of the area. Only a few locations showed higher flow (bottle neck locations), which coincided with roadkill âhotspotsâ identified through citizen science direct observations (70 observations of 21 species). Amalgamating data from the different analyses allow us to identify four key wildlife crossing locations (one of less priority) along the Inter-American Highway. We strongly recommend the placement of under/overpasses in these locations, with the aim to ensure wildlife safe movement and connectivity of wildlife populations in the region. Culvert modifications in the area could also be considered to incorporate wildlife underpasses at a reduced cost
Warm beach, warmer turtles: using drone-mounted thermal infrared sensors to monitor sea turtle nesting activity
For decades sea turtle projects around the world have monitored nesting females using labor-intensive human patrolling techniques. Here we describe the first empirical testing of a drone-mounted thermal infrared sensor for nocturnal sea turtle monitoring; on the Osa peninsula in Costa Rica. Preliminary flights verified that the drone could detect similar sea turtle activities as identified by on-the-ground human patrollers â such as turtles, nests and tracks. Drone observers could even differentiate tracks of different sea turtle species, detect sea turtle hatchlings, other wildlife, and potential poachers. We carried out pilot flights to determine optimal parameters for detection by testing different thermal visualization modes, drone heights, and gimbal angles. Then, over seven nights, we set up a trial to compare the thermal drone and operatorsâ detections with those observed by traditional patrollers. Our trials showed that thermal drones can record more information than traditional sea turtle monitoring methods. The drone and observer detected 20% more sea turtles or tracks than traditional ground-based patrolling (flights and patrols carried out across the same nights at the same time and beach). In addition, the drone operator detected 39 other animals/predators and three potential poachers that patrollers failed to detect. Although the technology holds great promise in being able to enhance detection rates of nesting turtles and other beach activity, and in helping to keep observers safer, we detail challenges and limiting factors; in drone imagery, current cost barriers, and technological advances that need to be assessed and developed before standardized methodologies can be adopted. We suggest potential ways to overcome these challenges and recommend how further studies can help to optimize thermal drones to enhance sea turtle monitoring efforts worldwide