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Abstract
The payload size and commercial availability of thermal infrared cameras mounted on 
drones has initiated a new wave in the potential for conservationists and researchers to sur-
vey, count and detect wildlife, even the most complex of habitats such as forest canopies. 
However, several fundamental design and methodological questions remain to be tested 
before standardized monitoring approaches can be broadly adopted. We test the impact of 
both the speed of drone flights and diel flight period on tropical rainforest canopy wildlife 
detections. Detection and identification rates differ between both flight speeds and diel 
time. Overall ~ 36% more detections were made during slower flight speeds, along with a 
greater ability to categorize taxonomic groups. Flights conducted at 3am resulted in ~ 67% 
more detections compared to flights conducted at 7am (the diel period with the lowest 
detection rate). However, 112% more detections could be identified to taxonomic group 
in 7am flights compared with 3am flights – due to the types of wildlife being identified 
and the assistance of the RGB camera. Although, this technology holds great promise for 
carrying out surveys in structurally complex and poorly known ecosystems like forest 
canopies, there is more to do in further methodological testing, and building automated 
post-processing systems. Our results suggest that drone studies in the same habitat types, 
with the same animal densities, could be off by multiples if flown during different times 
and/or at different speeds. The difference could be an alarming 5-6x variation in animal 
detections or identification depending on changes in these two factors alone.
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Introduction

The application of drones to survey, count and detect wildlife is a rapidly growing field, with 
great potential both for scientists and conservation practitioners. So far, drones have proven 
useful to accurately and efficiently make population counts for large lesser black-backed 
gull colonies (Larus fuscus; Rush et al. 2018), measure the density and biomass of jelly 
blubber (Catostylus mosaicus; Raoult and Gaston 2018), improve the precision of popula-
tion estimates of Australian fur seals (Sorrell et al. 2019), count and measure west African 
crocodiles (Crocodylus suchus; Aubert et al. 2021), and have been used to accurately count 
hippopotamus (Hippopotamus amphibius) in the Okavango delta (Inman et al. 2019). In 
addition to counting animals, drones have also been used to survey for features associated 
with wildlife, such as caiman (Scarpa and Piña 2019), Sumatran orangutan (Pongo abelii; 
Wich et al. 2015) and chimpanzee (Pan troglodytes schweinfurthii) nests (Bonnin et al. 
2018). Yet just 10% of ground-counted chimpanzee nests were identified by a fixed wing 
drone (Bonnin et al. 2018) – likely because detecting features or wildlife using red-blue-
green (RGB) cameras alone is extremely challenging in complexly layered forested habitats.

The changing price and payload size of thermal infrared (TIR) cameras that can be 
mounted upon drones has initiated a new wave in the potential for applied aerial conserva-
tion and research efforts in even the most complex of habitats. For example, eastern gray 
kangaroos (Macropus giganteus) surveyed in Australia’s grass and shrublands, were bet-
ter detected using TIR than RGB cameras (Brunton et al. 2020), a drone mounted with 
TIR detected 20% more nesting sea turtles and their tracks (principally Lepidochelys oliva-
cea and Chelonia mydas) than on-the-ground patrollers along Costa Rica’s rugged Pacific 
coastline (Sellés-Ríos et al. 2022), and a TIR camera mounted on drones has been used to 
accurately determine white-tailed deer (Odocoileus virginianus) population densities in the 
southeastern US (Beaver et al. 2020). Thermal infrared cameras have also proven successful 
in counting fruit bats such as flying-foxes (Pteropus spp.), with estimates of colony size 2.05 
and 1.92 times higher than ground-based counts by the experimenter and Australian govern-
ment counters respectively, providing more accurate and precise population density counts 
(McCarthy et al. 2021, 2022). In terms of densely forested habitats, drones mounted with 
TIR cameras have been used to successfully survey ungulates including red deer (Cervus 
elaphus), Javan deer (Rusa timorensis) and water buffalo (Bubalus arnee) in coniferous and 
deciduous forests of Poland (Witczuk et al. 2017), and also wildlife in the tropics (Rahman 
and Rahman 2021). Rahman and Rahman (2021) surveyed an Indonesian forested-urban 
area (40% forested) to compare TIR with ground-based camera traps and transects. The 
drone mounted with the TIR camera detected animals in the canopy that were undetected by 
both ground-situated camera traps and human transect observers.

Yet only a handful of studies to date have tested the ability of drones mounted with TIR 
cameras to detect animals in dense tropical rainforest canopies (Burke et al. 2019a; Kays 
et al. 2019; Rahman and Setiawan 2020; Spaan et al. 2019). Spaan et al. (2019) found that 
detecting spider monkeys (Ateles geoffroyi) at sleeping sites was more effective than using 
ground-based techniques and Burke et al. (2019b) used a drone mounted with TIR to suc-
cessfully detect Bornean orangutan (Pongo pygmaeus) and proboscis monkeys (Nasalis 
larvatus). Rahman and Setiawan (2020) assessed the performance of TIR in different forest 
cover classes in Indonesia and found that terrestrial species could be recorded in moderately 
forested vegetation types. Furthermore, they found that not only was detection of canopy 
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animals possible in densely forested cover types but that non-forested areas proved the 
most difficult in differentiating between background temperatures and thermal signatures 
of wildlife.

In the only Neotropical forest assessment to date, and one of the most comprehensive 
exploratory TIR forest projects, Kays et al. (2019) used a drone mounted with a TIR camera 
to survey the wildlife of Barro Colorado’s canopy fauna in Panama. As with the study by 
Burke et al. (2019a) they compared their pilot drone surveys with efforts from ground-based 
observations. Generally, the drones were useful to detect canopy species (arboreal and semi-
arboreal wildlife that live in the canopy and sub-canopy) but couldn’t detect sub-canopy 
terrestrial wildlife identified by ground-based observers. They found that arboreal mam-
mals had body temperatures around 27 °C and were conspicuous in the thermal infrared 
imagery at night and early morning when the forest canopy was cool (23–25 °C) but were 
difficult to detect when the direct sunshine had heated up canopy vegetation to over 30 °C 
by mid-morning. They also found that species were difficult to identify from thermal infra-
red imagery alone but could be recognized from synchronized RGB images taken during 
daylight hours.

The potential of drones mounted with TIR cameras for the detection and assessment of 
canopy species is promising, especially as canopy wildlife are some of the most impacted 
species in relation to forest disturbance (Whitworth et al. 2019), yet many canopy species 
are typically difficult to survey. This has been done traditionally via challenging and labor-
intensive ground-based surveys with binoculars (usually limited to diurnal survey transects, 
with some nocturnal efforts using spotlights from the ground), or more recently by the novel 
use of camera traps placed within the canopy (Whitworth et al. 2016). This second approach 
requires skilled climbers and moving heavy equipment on-foot through the forest. With a 
skilled drone operator, forest canopy surveys using a thermal camera could provide an effi-
cient way of gathering monitoring data of arboreal rainforest populations.

Despite this impressive opportunity, there remains several fundamental design and meth-
odological questions to be addressed before robust and standardized monitoring approaches 
can be established. Many of the settings in terms of flight speeds and best suitable times for 
flight detections are based on limited pilot data and have not been subjected to empirical or 
fine-scale testing. Here we use one of the first commercially available drones (Hensel et al. 
2018) pre-mounted with a TIR-RGB capable camera to carry out repeat surveys of multiple 
transects in one of the largest and densely forested rainforest systems in Central America, 
and the Neotropics generally, Costa Rica’s Osa Peninsula.

Specifically, we test the speed of drone flight in terms of the effect on canopy wildlife 
detection and carry out standardized surveys across five time periods between previously 
identified viable diel periods. We assess overall observations, the proportion of observa-
tions that can be identified to either group or species level, determine how these response 
variables relate to flight time and speed and look to provide basic insights on the ability of 
observers to both detect and identify wildlife from imagery. We hypothesize that flight time, 
drone speed and expertise of observers all influence wildlife detections and identification. 
We predict that: (1) Over the same given area, a slower flight speed will result in a greater 
number of detections and identifications, as there is more time to detect animal movement 
within the dense canopy layers. (2) That different flight times will result in different detec-
tion rates and different groups of animals likely to be detected. And (3) That an expert drone 
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pilot will be more skilled than a non-expert observer in detecting and identifying animals 
in the footage.

Materials and methods

Study site

The Osa Peninsula in southwest Costa Rica is home to the largest remaining tract of Pacific 
lowland wet forest in Mesoamerica (Holdridge 1967) and consists of a network of protected 
areas containing both old growth (of which less than half of the original area remains; 
Weissenhofer et al. 2001) and secondary rainforest. There is also a landscape matrix on the 
peninsula, outside of the protected areas, of cattle farms, oil palm, agriculture, and timber 
plantations. The study site is situated at the Osa Conservation Campus (formerly known as 
Piro Biological Station; 8.40388 N, 83.33661 W; see Fig. 1), embedded within the Golfo 
Dulce Forest Reserve that connects Osa’s two National Parks – Corcovado and Piedras 
Blancas. Temperatures at the field site range between 23.4 and 28.8 °C (Whitworth et al. 
2018). Rainfall averages 3,584 mm yr− 1 and is seasonal, with a rainy season from June to 
November and a dry season from December to May (Taylor et al. 2015). The campus is 
comprised of 1,982 ha of privately protected land with a variety of vegetation types, includ-

Fig. 1  Map of study area. The yellow star in the inset map (top right), shows the location of the field site in 
Costa Rica, on the Osa Peninsula in the southern Pacific zone. The yellow star in the main map represents 
the Osa Biological Station (known locally as Piro), and the colored lines represent the four transect routes 
flown. Each transect is defined by a different color, the starting point of each transect is indicated by an 
“S” and the end point of each transect is indicated by an “E”.
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ing old-growth primary forest, naturally regenerating secondary-growth forest and second-
ary plantation forest (for a detailed description see Whitworth et al. 2018). Our study flights 
were conducted in areas of old-growth primary forest and > 40-year-old naturally regenerat-
ing secondary-growth forest (see Fig. 1).

Equipment and licenses

For this experiment, we used the Autel Robotics EVO II Dual 8 K Drone. The aircraft take-
off weight is 1150 g (2.5lbs). No flights were performed on rainy days or during wind speed 
over 26 km/h, following the security measures recommended for drone flights (Barreto et 
al. 2021). The equipment, licenses, and staff required during the drone-monitoring operation 
are described in Table S1, Supplementary Material.

Study design

A total of 40 flights were conducted to record wildlife in the canopy, along four transects, 
each ~ 4 km in total length, during April 2021 (late dry season) in forested habitat. The Autel 
Explorer application, along with verification against detailed contour maps, was used to lay 
out the flight transect plans, flight speeds, and flight altitudes. Kays et al. (2019) determined 
that flights by mid-morning caused the ambient temperature to be too hot to detect wildlife 
effectively (corroborated by our pilot flights at the study site). We also determined that 
after the end of the day, that the forest canopy was still too warm to effectively distinguish 
wildlife in the TIR imagery from the background heat maintained. We therefore focused our 
flights within the window of high TIR functionality. We performed five repeat flights per 
transect between 11pm and 7am, at intervals of every two-hours (flight take-off times for 
these five repeats were 11pm, 1am, 3am, 5am, and 7am). So, the 40 flights were carried out 
across 8 nights (see Supplementary Table S2 for a list).

To identify any effect of speed for wildlife detectability we flew the drone at two differ-
ent speeds – 20 flights at 18 km/h and 20 flights at 10 km/h with a standard repeat across 
transects (ten flights over each transect) and time periods (eight at each time-period). Flights 
were carried out at 90-100 m of elevation above ground level as we determined that this 
would give us ~ 30-50 m clearance from the tree top level depending on canopy height and 
terrain changes and be sufficient to avoid eliciting distressing flight responses to the canopy 
wildlife; see Brunton et al. (2019). The camera angle was set to 90º.

Data processing was performed by the local drone pilot, an expert familiar with Costa 
Rican rainforest fauna, analyzing 660 min of x40 8k videos – both TIR, and where avail-
able, RGB (this was the data set utilized for the analyses in terms of flight time and speed 
effects). Sunrise at the site during April is ~ 5:25am and so RGB footage was only clear and 
useable by observers in the 7am flights. All processing was done at real speed, but all poten-
tial occurrences of thermal activity were stopped and investigated and replayed at as many 
times as needed where necessary to verify and check potential detections.

In addition, identifying individuals and species inhabiting the canopy from the drone 
footage could be challenging for a non-trained observer, so we conducted a simple study 
to compare the number of individuals observed and the species identification ability of our 
expert drone pilot against a non-specialist intern – observing all the videos from the drone 
flights. Detections were identified to the maximum detail possible (species, genus, or ani-
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mal group - e.g., bird, bat, primate, etc.), and where not possible, they were left as “animal 
without identification”.

Statistical analysis

Flight speed and time

To identify differences in the number of detections and proportion of detections identifiable 
according to the drone flight speed and time of flight we ran Generalized Linear Mixed 
Models (GLMMs; glmer, R package ‘lme4’) with speed (two levels: 10 km/h and 18 km/h) 
and time (five levels: 11pm, 1am, 3am, 5am, and 7am) as the predictor variables; because 
each flight was performed in 4 transects, the transect identity was include as a random fac-
tor in the model. In total we test seven response variables to explore the effect of time and 
speed on species detection and identification: number of detections (a detection is defined 
as a group or a single animal, not as raw counts of individuals); number of identifiable 
detections (identified to group; i.e. primate, bird, bat, kinkajou/olingo, etc.); proportion of 
detections identified; number of detection identified as primates; proportion of detections of 
animals moving; number of detections identified as bats; and number of detections identi-
fied as birds. The Poisson distribution with a logarithm link function was used for all count 
data (after checking for overdispersion) and the Gaussian distribution with a link function 
was used for the proportion variables (after checking for linearity and homoscedasticity; 
Zuur et al. 2009). Tukey post-hoc comparisons were run to test for differences between the 
5 flight times analyzed using the emmeans package in R (Lenth et al. 2021).

Species ID vs. observer

To test for differences between the expert and novice observer, we carried out three GLMMs 
with the number of detections, proportion of detections identifiable to group, and number 
of detections of primates as the response variables, the observer as the explanatory variable 
(two levels: high vs. low expertise), and transect ID was added as a random effect variable. 
All previous data analysis was performed using observations made by the high expertise 
observer.

Results

The expert observer drone pilot recorded 440 animal detections (782 individuals) across the 
40 flights, totaling ~ 11 h of flight time. In total we encountered 45 detections of primates 
(Fig. 2a), 57 detections of birds (owls, toucans, and macaws; Fig. 2b), 72 detections of bats 
(Fig.  2c) and seven detections of kinkajou/olingos (Fig.  2d). The majority of detections 
(65%) could not be identified to taxonomic group (see Fig. 2e, Table S2 and Video S1 - 
Supplementary Materials).

1 3

3184



Biodiversity and Conservation (2022) 31:3179–3195

Flight speed

More detections were made on flights conducted at the slower flight speed of 10 km/h com-
pared with the faster speed at 18 km/h (a mean of 14.4 detections/flight ± 1.16 vs. 10.6 ± 0.93 
respectively: X2

1,4 = 11.53, p = 0.0007 – Fig.  3a). Slower flight speeds also doubled the 

Fig. 2  Thermal infrared drone screenshots from the transects: (a) a troop of primates detected on transect 
‘Forest West’ during the 5am flight, (b) a flying bird detected on transect ‘Forest West’ during the 7am 
flight, (c) a flying bat detected on transect ‘Forest West’ during the 1am flight, (d) a kinkajou/olingo de-
tected on transect ‘Forest West’ during 1am flight, and (e) an unidentified animal. Imagery is ~ 90-100 m 
above ground level, and ~ 30-50 m clearance from the canopy level. The camera angle was set to 90º.
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absolute number of detections that could be categorized to taxonomic group (5.95 detec-
tions/flight ± 1.07 vs. 2.85 ± 1.07; X2

1,4 = 11.93, p = 0.0005 – Fig. 3c), with 1.46x greater 
proportion of detections that could be identified at slower speeds (0.41 ± 0.06 vs. 0.28 ± 0.06; 
X2

1,4 = 10.90, p = 0.0009 – Fig. 3e). However, the number of primate detections was variable 
among transects at both flight speeds, with detections higher at faster flight speed, though 
not significantly so (0.52 ± 0.16 vs. 0.88 ± 0.22; X2

1,4 = 2.75, p = 0.097 – Fig. 3a). Finally, 
the proportion of detections of moving animals was ~ 1.5x greater at the slower flying speed 
(0.44 ± 0.06 vs. 0.29 ± 0.06; X2

1,4 = 14.60, p = 0.0001 – Fig. 3c).

Time of day

The overall number of detections varied according to the flight time (X2
1,4 = 13.36, p = 0.009). 

More individuals were recorded in flights conducted at 3 am (mean of 14.99 ± 1.59 detec-

Fig. 3  Variation in wildlife detections and identification across time and speed of drone flights; (a) number 
of wildlife detections vs. drone speed flight; (b) number of wildlife detections vs. flight time; (c) identifi-
able detections vs. drone speed flight; (d) identifiable detections vs. flight time; (e) proportion of identifi-
able detections vs. drone speed flight; (f) proportion of identifiable detections vs. flight time.
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tions/flight), followed by 1 am (13.64 ± 1.50), and lowest at 7 am (8.97 ± 1.16; Fig. 4b, Table 
S3 - Supplementary Materials). In addition, the number and proportion of identifiable detec-
tions also varied across diel times (X2

1,4 = 9.29, p = 0.054 and X2
1,4 = 72.43, p < 0.0001, 

respectively). The number of detections and proportion of identifiable detections were 
highest in 7am flights (6.88 ± 1.32 detections/flight identified and 0.74 ± 0.07 proportion of 
detections identified), with consistently lower levels in all nocturnal flights. The lowest 
number of rate of detections/flight was at 11pm (3.12 ± 1.32) and at 3 am for the proportion 
of identified detections/flight (0.20 ± 0.07; Fig. 4d and f, Table S3 - Supplementary Materi-
als) − 55% and 73% lower than 7am flights, respectively. The identification of primates was 
high within both the 5am and 7am flight times (1.93 ± 0.49 and 2.30 ± 0.54 primate detec-
tions/flight, respectively) and low across all nocturnal flights, being the lowest found at 3 am 
(0.24 ± 0.17 – X2

1,4 = 23.24, p = 0.0001; Fig. 4b, Table S3 – Supplementary Materials). The 

Fig. 4  Variation in different taxonomic groups detections across time and speed of drone flight; (a) num-
ber of primate detections vs. drone speed flight; (b) number of primates detections vs. flight time; (c) pro-
portion of detections with animals observed moving vs. drone speed flight; (d) proportion of detections 
with animals observed moving vs. flight time; (e) number of bats detected vs. flight time; (f) number of 
birds detected vs. flight time.
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proportion of moving animal detections was higher at 7am (0.72 ± 0.07) compared with the 
rest diel time of flights, being the lowest at 11 pm (0.20 ± 0.07 – X2

1,4 = 89.63, p < 0.0001; 
Fig. 4d, Table S3 – Supplementary Materials). Bats were identifiable from their rapid move-
ment in the canopy but were only detected during nocturnal flights, with the highest number 
of bat detections at 1 am and 3 am (2.60 ± 0.79 and 2.30 ± 0.71 detections/flight respectively 
– X2

1,4 = 15.04, p = 0.005 – Fig. 4e); while bird detections were mostly restricted to the 
morning flights, being the highest at 7 am (3.09 ± 0.76 detections/flight) and low detection 
rates at 11 pm (0.71 ± 0.28 detections/flight – X2

1,4 = 15.17, p = 0.004; Fig. 4f, Table S3 – 
Supplementary Materials).

Observer expertise

Our results showed that the overall number of detections did not vary with the expertise of 
the observer (17.7 ± 2.06 detections found by the observer with less expertise and 19.2 ± 2.06 
detections by the observer with more expertise – X2

1 = 0.37, p = 0.54 (Fig. 5a). However, dif-
ferences were found in the proportion of detections which were identified by each observer; 
the person with more expertise in local fauna was able to identify more than twice the 

Fig. 5  Differences in (a) number of detections, (b) proportion of detections identified, and (c) number 
of primate detections; all between the expert and novice observers identifying wildlife from the drone 
footage.
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proportion than the novice observer (0.35 ± 0.04 vs. 0.15 ± 0.04, respectively – X2
1 = 21.11, 

p < 0.0001 (Fig. 5b). The person with more expertise was also able to identify 16x more 
primate detections than the person with less expertise (2.93 ± 0.64 vs. 0.18 ± 0.64 primates/
flight, respectively – X2

1 = 51.81, p < 0.0001; Fig. 5c).

Discussion

Understanding the effects of methodological variation is critical in the early testing of any 
burgeoning technology field (Doull et al. 2021). We explored the effects of varying flight 
speed and flight time of day on the potential to survey and monitor forest canopy wild-
life using a commercial grade TIR-RGB camera mounted drone and provide initial insight 
as to how the ability of human observers can affect post-processing of detections. As we 
predicted, canopy wildlife detection rates and identification ability differed substantially 
between both flight speeds and diel time of flights. However, the preferred methodological 
settings are nuanced and dependent upon the specific research subjects or monitoring targets 
in question, especially because flights within different diel times detect different subsets of 
canopy fauna. Although our local expert drone pilot was able to identify and categorize 16x 
more records to group/species than the novice observer, both were able to detect similar 
numbers of records from flight imagery. Below we explore these nuances around flight 
speed, diel flight times, and observer effects, and discuss the applications and advances 
around the future potential application of TIR-RGB camera mounted drones for standard-
ized canopy wildlife surveys and monitoring.

Flight speed

In terms of flight speed, there is a conceived trade-off between the distance that can be 
travelled due to battery life limitation (Coops et al. 2019), and the speed at which a drone 
can travel, i.e., flying faster might cover more ground, but flying slower might avoid 
missing potential detections. In our case, covering the same flight distance at the slower 
speed resulted in ~ 36% more detections, ~ 109% more identified detections/flight, a ~ 46% 
increase in the proportion of detections that could be identified, and a ~ 52% greater prob-
ability of detecting animals moving. So, if we want to gather more accurate counts, then 
slower flight speeds are likely preferable. Our drone operator and expert reviewer stated 
that the enhanced ability to observe the movement of identified targets in the slower flights 
helped to identify what the animal was. However, there is no difference in the detectability 
of large-bodied and gregarious primates in flying slower or faster. Our pilot stated that this 
was due to the RGB footage available in the 7am flights that aids in the identification of 
records first detected in the TIR imagery. The pilot observer also stated that the primates are 
typically larger and generally more gregarious than most of the other canopy fauna in this 
ecosystem and as such, were easier to identify. In summary, more ground can be covered 
with faster flights for an equal number of records for large-bodied gregarious primates (if 
RGB footage is utilized), but nocturnal surveys and counts for other more cryptic wildlife 
(that only utilize TIR imagery) should be carried out at slower speeds. This is a factor that 
should be considered and tested for drone wildlife surveys more broadly, across an array of 
wildlife groups, habitats and vegetation types.
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Although both of our post-processing human reviewers were able to detect similar num-
bers of records from flight imagery, comparing just two observers is not sufficient to be 
sure that this would be the case across a greater number of observers. Linchant et al. (2018) 
found that observers with training were more adept at identifying the common hippopot-
amus (Hippopotamus amphibius) in drone imagery and found high levels of agreement 
within trained observers (Linchant et al. 2018). Similar moderate to high levels of observer 
agreement have been identified within tropical forest canopy habitat similar to ours, specifi-
cally for spider monkeys (Ateles geoffroyi; Spaan et al. 2022). Our local expert drone pilot 
was able to identify and categorize a much greater number of records (16x) than the novice 
observer – an indication that differences will occur with human observers if information is 
needed beyond general counts; arguing for a machine learning (ML) approach to standard-
ize surveys and avoid challenges related with variability in human performance (Corcoran 
et al. 2021). We had both observers label video footage which can now provide the basis for 
ML developers to build processing models to automate detections in the future (Corcoran 
et al. 2021). Building this post-processing workflow will be a necessary next step toward 
building comprehensive canopy wildlife monitoring programs (Coops et al. 2019).

It is plausible that automated techniques won’t be subject to the same differences in 
relation to flight speeds and the ability to detect and identify wildlife as human observ-
ers. Where human observers might not detect the most subtle temperature signals hidden 
by vegetation and in fast moving imagery, automated techniques might be trained to do 
so. However, our expert observer felt confident that they were not missing observations in 
faster footage speeds (as they had the ability to pause and check and go back as many times 
as necessary on any potential signal), but stated that faster flights meant that animals didn’t 
have chance to move or come out of canopy cover as they did in the slower drone flights (see 
Spaan et al. 2022). As such, machine learning wouldn’t necessarily result in more detec-
tions, but provide faster imagery processing power. A study to assess playback speeds with 
naïve observers might be a good way to confirm that this is not an effect of playback speed, 
and a true effect of drone detection.

Machine learning techniques that take advantage of multiple observation points, or the 
movement patterns detected in video, could greatly enhance the ability to distinguish among 
animal species/groups – a factor that our non-expert observer struggled to execute con-
fidently. Additionally, automated processing via ML and artificial intelligence (AI) algo-
rithms would provide a basis for efficiently handling the volume of large sized imagery 
data sets. This is especially true if the aim is to carry out regular flight surveys that could be 
used to monitor canopy wildlife across seasons, long-term temporal periods, habitat types, 
disturbance impacts and management regimes.

Time of day

In addition to detection differences of specific wildlife groups being attributed to flight 
speed, diel time of flights showed a marked difference in the subsets of wildlife likely to be 
detected. Although Kays et al. (2019) determined that flights by mid-morning caused the 
ambient temperature to be too hot to detect wildlife effectively, much of their flight work 
was exploratory and their two study surveys were only carried out in early morning. Our 
standardized diel assessment during the high efficacy window for TIR technology in tropical 
rainforest habitat (from 11pm to 7am) allowed us to explore not only when overall detection 
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rates are highest, but also how these different diel periods are suited to surveys of particular 
groups of wildlife.

Flights conducted at 3am (TIR only) resulted in ~ 67% more records compared with 
7am flights (TIR + RGB). However, ~ 112% more detections were identifiable in 7am flights 
(a ~ 55% increase in the proportion of records that could be identified in flights at 7am com-
pared with 3am flights). This could be related to two key reasons: (1) Physical - that the light 
levels and complementary RGB footage filming in parallel can help to aid identification 
ability in the 7am flights, and (2) Behavioral - that the species active diurnally are generally 
large and live in gregarious groups (e.g., spider monkey; Ateles geoffroyi, howler monkey; 
Alouatta palliata, and white-faced capuchin monkey; Cebus imitator) compared with some 
of the more cryptic and smaller nocturnal living species (e.g., kinkajou, Potos flavus; olingo, 
Bassaricyon gabbii; Mexican hairy dwarf porcupine, Coendou mexicanus and opossums). 
Kays et al. (2019) suggests that illumination from the drone over the canopy during the 
nocturnal flights might allow the RGB camera to gather complementary footage to better 
identify nocturnal wildlife. This would also help to tease apart the effects of the physical 
and behavioral, potentially co-occurring effects. Additionally, improved resolution of TIR 
cameras could allow for more accurate, species level, identifications (Burke et al. 2019b; 
Witczuk et al. 2017).

Understanding diel patterns and methodological effects is key if we are to build stan-
dardized monitoring guidelines. Carrying out different diel flights for example, can provide 
the most comprehensive characterization profile of overall canopy fauna, and slower flight 
speeds are useful to maximize the potential to gather records and aid identification. Flights 
across various diel periods might be the most effective way to determine a faunal profile 
of a given rainforest habitat, such as the relative occurrence of primates vs. birds vs. bats 
vs. other nocturnal fauna in a habitat or between survey locations. Or maybe the goal is to 
develop a monitoring approach for a specific target group, such as primates. Our results sug-
gest in this case that primate monitoring would be most efficient during early morning 7am 
flights, when movement rates of species are at their greatest, RGB footage is a useful aid, 
and the background canopy temperature is still cool enough to easily detect animals in the 
canopy. The combination of animal movement, and availability of the RGB footage allow 
for species to easily be detectable, and for this group, faster flight speeds can be used allow-
ing for more survey area to be covered within a given flight.

That said, slower speeds are useful for enhancing the opportunity to record and identify 
less conspicuous fauna that might also be of interest. As drones and batteries continue to be 
improved, these limitations in flight speed restrictions vs. coverage can be overcome (Coops 
et al. 2019). Larger and commercially available fixed drones for example can fly far longer, 
compared to the ~ 25 min of the commercially available multirotor drone used in this study. 
But they might not be able to fly at the slower speeds necessary for effective identification or 
have the potential to hover like a multirotor. Some surveys for example might wish to hover 
above specific fruiting trees or be able to follow specific animals or groups once located, 
and therefore the abilities of a multirotor drone will be necessary. Lighter-than-air airships 
could be an even better platform due to their ability to fly at very slow speeds, and the abil-
ity to have periods of silence, which would allow simultaneous acoustic detection as well, 
particularly important for cryptic mammals and bats (see Gili et al. 2021).

Before standardized approaches for forest canopy thermal monitoring can be adopted 
there remains several additional factors to be tested. Burke et al. (2019) for example deter-
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mined that a specific angle of the camera could better detect rare riverine rabbits than cam-
eras pointed directly downwards – but so far there is no understanding as to how this might 
affect forest canopy surveys. One might predict that as forest canopies are three-dimen-
sional and structurally complex, that camera angle might not have such an effect as with the 
simpler habitat in which the rabbits were surveyed – but this remains to be tested. Another 
challenge still to be investigated in detail includes the height above the canopy and the focal 
length/FOV of the camera. Flying too low could create issues inducing flight responses in 
some species (Brunton et al. 2019; Duporge et al. 2021), but Spaan et al. (2022) found that 
flying just 10 m above the canopy layer did not illicit any flight response in spider monkeys, 
only triggering on occasion some alarm and contact calls. We flew slightly higher than the 
height flown by Kays et al. (2019) and Spaan et al. (2022), as we were concerned that some 
of the ancient emergent trees of Osa’s forest could be dangerously close to the drone (a 
model that cannot track terrain but must be pre-programmed based on waypoints and terrain 
layers), so we wanted to ensure safe clearance on all the routes. Flying higher and having a 
higher zoom reduces the footprint but increases the number of pixels in any animal, aiding 
detection and identification. Higher resolution sensors could facilitate higher flights without 
losing pixel quality when using zoom functions.

The technology clearly holds great promise as a survey tool to gather data on wildlife that 
is traditionally challenging to survey from the ground, problematic to detect at night (Burke 
et al. 2019) and in areas of challenging terrain, or areas deemed unsafe for observers – due 
to hunting or other illegal activities. High definition RGB canopy monitoring has already led 
to detection rates attractive enough for the potential use of occupancy modeling techniques 
for spider monkeys (Spaan et al. 2022), and if the same is true that has been shown for kan-
garoos and deer, then TIR-RGB cameras could increase detectability rates and accuracy of 
counts even further (Beaver et al. 2020; Brunton et al. 2020). As the technology becomes 
more financially attractive (Spaan et al. 2022), there is promising evidence for numerous 
applications (e.g., Beaver et al. 2020; Burke et al. 2019; Spaan et al. 2019) that subsequently 
we should expect to see the continued expansive exploration of approaches, and eventual 
implementation of large-scale forest canopy monitoring systems. Automated identification 
using machine learning and the application of airborne optical sectioning to remove canopy 
obscuring animals will be large steps forward towards establishing canopy monitoring sys-
tem (e.g., Schedl et al. 2020, 2021).

Our efforts show that there are significant next steps in further testing of methodological 
variables, and in terms of building automated post-processing systems before the technol-
ogy might be used in favor of more traditional or alternative census techniques (Brunton et 
al. 2020; Spaan et al. 2022). We show that simple variations in time of day and flight speed 
can more than double detections and more than triple identification potential of detections 
– resulting in what could be an alarming 5-6x variation in animal detections or identifica-
tion. Multiple groups doing studies in the same vegetation types would be off by multiples, 
even if they flew over the same animal densities, due to the time of day and/or speed that 
they flew. Such variations need to be well understood and a focus of future studies, so that 
standardized approaches for given target animals or habitat types can be adopted.
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