227 research outputs found

    Understanding the dynamics of segregation bands of simulated granular material in a rotating drum

    Full text link
    Axial segregation of a binary mixture of grains in a rotating drum is studied using Molecular Dynamics (MD) simulations. A force scheme leading to a constant restitution coefficient is used and shows that axial segregation is possible between two species of grains made of identical material differing by size. Oscillatory motion of bands is investigated and the influence of the frictional properties elucidated. The mechanism of bands merging is explained using direct imaging of individual grains

    Phosphorus mirabilis: illuminating the past and future of phosphorus stewardship

    Get PDF
    After its discovery in 1669, phosphorus (P) was named Phosphorus mirabilis (“the miraculous bearer of light”), arising from the chemoluminescence when white P is exposed to the atmosphere. The metaphoric association between P and light resonates through history: from the discovery of P at the start of the Enlightenment period to the vital role of P in photosynthetic capture of light in crop and food production through to new technologies, which seek to capitalize on the interactions between novel ultrathin P allotropes and light, including photocatalysis, solar energy production, and storage. In this introduction to the Journal of Environmental Quality special section “Celebrating the 350th Anniversary of Discovering Phosphorus—For Better or Worse,” which brings together 22 paper contributions, we shine a spotlight on the historical and emerging challenges and opportunities in research and understanding of the agricultural, environmental, and societal significance of this vital element. We highlight the role of P in water quality impairment and the variable successes of P mitigation measures. We reflect on the need to improve P use efficiency and on the kaleidoscope of challenges facing efficient use of P. We discuss the requirement to focus on place-based solutions for developing effective and lasting P management. Finally, we consider how cross-disciplinary collaborations in P stewardship offer a guiding light for the future, and we explore the glimmers of hope for reconnecting our broken P cycle and the bright new horizons needed to ensure future food, water, and bioresource security for growing global populations

    The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil

    Full text link
    The critical-velocity behavior of oscillatory superfluid Helium-4 flow through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during which the frequency remained below 400 Hz, the critical velocity was a nearly-linearly decreasing function of increasing temperature throughout the region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi phase slips could be observed at the onset of dissipation. In runs with frequencies higher than 400 Hz, downward curvature was observed in the decrease of critical velocity with increasing temperature. In addition, above 500 Hz an alteration in supercritical behavior was seen at the lower temperatures, involving the appearance of large energy-loss events. These irregular events typically lasted a few tens of half-cycles of oscillation and could involve hundreds of times more energy loss than would have occurred in a single complete 2 Pi phase slip at maximum flow. The temperatures at which this altered behavior was observed rose with frequency, from ~ 0.6 K and below, at 500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203

    Effect of Intraduodenal Bile and Na-Taurodeoxycholate on Exocrine Pancreatic Secretion and on Plasma Levels of Secretin, Pancreatic Polypeptide, and Gastrin in Man

    Get PDF
    The effect of intraduodenally administered cattle bile (CB) and Na-taurodeoxycholate (TDC) on basal pancreatic secretion and plasma levels of secretin, pancreatic polypeptide (PP), and gastrin were investigated on two separate days in 10 fasting volunteers. Doses of 2-6 g CB and 20&600 mg TDC were given intraduodenally at 65-min intervals. Volume, bicarbonate, lipase, trypsin, amylase, and bilirubin were measured in 10-min fractions of duodenal juice, and GI peptides determined by radioimmunoassay. CB and TDC enhanced significantly and dose-dependently volume, bicarbonate and enzyme secretion, and plasma secretin and PP levels. In contrast, plasma gastrin showed only a marginal increase. We conclude that the hydrokinetic effect of intraduodenal CB and TDC is at least partially mediated by secretin. Gastrin could be ruled out as a mediator of the ecbolic effect, whereas other GI peptides, primarily CCK, and/or neural mechanisms must be considered possible mediators. Both pathways may also play a role in the PP release

    Future phosphorus: advancing new 2D phosphorus allotropes and growing a sustainable bioeconomy

    Get PDF
    With more than 40 countries currently proposing to boost their national bioeconomies, there is no better time for a clarion call for a “new” bioeconomy, which, at its core, tackles the current disparities and inequalities in phosphorus (P) availability. Existing biofuel production systems have widened P inequalities and contributed to a linear P economy, impairing water quality and accelerating dependence on P fertilizers manufactured from finite nonrenewable phosphate rock reserves. Here, we explore how the emerging bioeconomy in novel, value-added, bio-based products offers opportunities to rethink our stewardship of P. Development of integrated value chains of new bio-based products offers opportunities for codevelopment of “P refineries” to recover P fertilizer products from organic wastes. Advances in material sciences are exploiting unique semiconductor and opto-electrical properties of new “two-dimensional” (2D) P allotropes (2D black phosphorus and blue phosphorus). These novel P materials offer the tantalizing prospect of step-change innovations in renewable energy production and storage, in biomedical applications, and in biomimetic processes, including artificial photosynthesis. They also offer a possible antidote to the P paradox that our agricultural production systems have engineered us into, as well as the potential to expand the future role of P in securing sustainability across both agroecological and technological domains of the bioeconomy. However, a myriad of social, technological, and commercialization hurdles remains to be crossed before such an advanced circular P bioeconomy can be realized. The emerging bioeconomy is just one piece of a much larger puzzle of how to achieve more sustainable and circular horizons in our future use of P

    Light emission from a scanning tunneling microscope: Fully retarded calculation

    Full text link
    The light emission rate from a scanning tunneling microscope (STM) scanning a noble metal surface is calculated taking retardation effects into account. As in our previous, non-retarded theory [Johansson, Monreal, and Apell, Phys. Rev. B 42, 9210 (1990)], the STM tip is modeled by a sphere, and the dielectric properties of tip and sample are described by experimentally measured dielectric functions. The calculations are based on exact diffraction theory through the vector equivalent of the Kirchoff integral. The present results are qualitatively similar to those of the non-retarded calculations. The light emission spectra have pronounced resonance peaks due to the formation of a tip-induced plasmon mode localized to the cavity between the tip and the sample. At a quantitative level, the effects of retardation are rather small as long as the sample material is Au or Cu, and the tip consists of W or Ir. However, for Ag samples, in which the resistive losses are smaller, the inclusion of retardation effects in the calculation leads to larger changes: the resonance energy decreases by 0.2-0.3 eV, and the resonance broadens. These changes improve the agreement with experiment. For a Ag sample and an Ir tip, the quantum efficiency is \approx 104^{-4} emitted photons in the visible frequency range per tunneling electron. A study of the energy dissipation into the tip and sample shows that in total about 1 % of the electrons undergo inelastic processes while tunneling.Comment: 16 pages, 10 figures (1 ps, 9 tex, automatically included); To appear in Phys. Rev. B (15 October 1998

    Bilijarna funkcija u radnika profesionalno izloženih aluminijskoj prašini i dimu

    Get PDF
    This study investigated billiary secretory function in workers occupationally exposed to aluminium dust and fumes. It included a group of 34 male workers aged (44.1±7.8) years and exposed up to 4.6 mg m-3 of aluminium dust and fumes in workplace air for (21.6±2.5) years, and a group of 30 unexposed control male workers. Serum and urine aluminium levels were measured in both groups before and after chelating treatment with 1 g deferoxamine by intramuscular injection. Billiary function was assessed by measuring gamma-glutamyl transpeptidase, alkaline phosphatase, 5-nucleotidase, cholesterol and its fractions, total and indirect bilirubin, and bile acids. We then analysed the relationship between Al exposure and billiary function. In the exposed group mean serum aluminium was significantly higher [(4.91±3.86) µg L-1] than in controls. The same was true for urine Al before [(1.57±1.93) µg L-1] and after deferoxamine [(11.51±14.97) µg L-1]. Total and indirect bilirubin and alkaline phosphatase were significantly higher in the exposed than in control workers, and they correlated with urine Al after the chelating treatment. Our findings suggest that chronic occupational exposure to aluminium dust and fumes leads to a significant body retention of aluminium. The impaired biliary secretion in the exposed workers manifested itself in subclinical signs of cholestasis.Eksperimentalna istraživanja na životinjama pokazuju da kronična izloženost aluminiju može izazvati smanjen prijenos organskih aniona preko žučnih kanalića, što ima za posljedicu poremećaje sekrecije žuči i kolestazu. Učinci kronične izloženosti aluminiju na bilijarnu funkciju u ljudi do sada nisu istraživani. Procjenjivali smo učinke na bilijarnu funkciju radnika koji su profesionalno izloženi prašini i dimu aluminija. U izloženoj skupini bila su 34 muškarca, životne dobi (44,1±7,8) godina koji su tijekom (21,6±2,5) godina bili izloženi razini do 4,6 mg m-3 prašine i dima aluminija. Kontrolna skupina sastojala se od 30 neizloženih radnika. Vrijednosti aluminija određene su u serumu i mokraći u obje skupine prije i nakon davanja kelatirajućeg spoja (deferoksamin u dozi od 1 g im.). Za procjenu bilijarne funkcije rabljeni su ovi pokazatelji: γ-glutamil transpeptidaza, alkalna fosfataza, 5-nukleozidaza, kolesterol, ukupni i indirektni bilirubin te žučne kiseline. Analizirana je korelacija između izloženosti aluminiju i bilijarne funkcije. Srednja vrijednost Al u serumu izloženih radnika [(4,91±3,86) µg L-1], kao i koncentracije Al u mokraći prije [(1,57±1,93) µg L-1] i nakon primjene kelatirajućeg spoja [(11,5±15,0) µg L-1] bile su statistički značajno više u odnosu na vrijednosti u kontrolnih ispitanika. Vrijednosti ukupnog i indirektnoog bilirubina te alkalne fosfataze bile su statistički značajno više u izloženih radnika i pozitivno su korelirale s ukupnim Al izlučenim mokraćom nakon primjene kelatora. Može se zaključiti da kronična profesionalna izloženost prašini i dimu aluminija dovodi do tjelesnog opterećenja aluminijem i poremećaja bilijarne funkcije, što se odražava supkliničkim znakovima kolestaze

    Degree of Phosphorus Saturation as a Predictor of Redox-Induced Phosphorus Release from Flooded Soils to Floodwater

    Get PDF
    Phosphorus (P) loss from soils is often enhanced under flooded, anaerobic conditions, increasing the risk of freshwater eutrophication. We aimed to develop a predictive tool to identify soils with greater P release potential under summer‐flooded conditions, which would help in developing strategies to mitigate P losses. One in situ mesocosm study was conducted in field plots with three treatments: cattle manure amended, monoammonium phosphate amended, and unamended. Two ex situ field mesocosm studies were conducted, each having 12 surface soils from agricultural fields. Prior to flooding, soils were analyzed for various soil test P (STP, intensity) and P sorption measures (capacity), and degree of P saturation (DPS) indices were calculated using different intensity and capacity combinations. Mesocosms were flooded and redox potential, pore water, and floodwater dissolved reactive P (DRP) concentrations were determined periodically up to 42 (in situ) and 56 d (ex situ) after the onset of flooding. Floodwater DRP increased significantly in most soils with flooding time, and the maximum DRP (DRPmax) was considered as the flooding‐induced P release risk. Relationships between floodwater DRPmax and STP or DPS indices were established separately for low‐P (Olsen P ≤ 30 mg kg−1) and high‐P (>30 mg kg−1) soils. Several STP indices effectively predicted the P release risk from high‐P soils, but not from low‐P soils. However, DPS calculated using Olsen P (intensity) and P sorption capacity or P saturation index (capacity) performed better in predicting summer flooding‐induced P release across all soil categories, with a higher predictive power."This work was supported by the Manitoba Conservation and Water Stewardship Fund, Environment Canada through the Lake Winnipeg Basin Stewardship Fund (EC no. 1300328), and a University of Winnipeg major grant. We also acknowledge the Manitoba Graduate Scholarship program and the University of Winnipeg Graduate Assistantship Program."https://acsess.onlinelibrary.wiley.com/doi/10.2134/jeq2019.04.015
    corecore