13,733 research outputs found

    The basics of gravitational wave theory

    Full text link
    Einstein's special theory of relativity revolutionized physics by teaching us that space and time are not separate entities, but join as ``spacetime''. His general theory of relativity further taught us that spacetime is not just a stage on which dynamics takes place, but is a participant: The field equation of general relativity connects matter dynamics to the curvature of spacetime. Curvature is responsible for gravity, carrying us beyond the Newtonian conception of gravity that had been in place for the previous two and a half centuries. Much research in gravitation since then has explored and clarified the consequences of this revolution; the notion of dynamical spacetime is now firmly established in the toolkit of modern physics. Indeed, this notion is so well established that we may now contemplate using spacetime as a tool for other science. One aspect of dynamical spacetime -- its radiative character, ``gravitational radiation'' -- will inaugurate entirely new techniques for observing violent astrophysical processes. Over the next one hundred years, much of this subject's excitement will come from learning how to exploit spacetime as a tool for astronomy. This article is intended as a tutorial in the basics of gravitational radiation physics.Comment: 49 pages, 3 figures. For special issue of New Journal of Physics, "Spacetime 100 Years Later", edited by Richard Price and Jorge Pullin. This version corrects an important error in Eq. (4.23); an erratum is in pres

    Conserved charges of the extended Bondi-Metzner-Sachs algebra

    Full text link
    Isolated objects in asymptotically flat spacetimes in general relativity are characterized by their conserved charges associated with the Bondi-Metzner-Sachs (BMS) group. These charges include total energy, linear momentum, intrinsic angular momentum and center-of-mass location, and, in addition, an infinite number of supermomentum charges associated with supertranslations. Recently, it has been suggested that the BMS symmetry algebra should be enlarged to include an infinite number of additional symmetries known as superrotations. We show that the corresponding charges are finite and well defined, and can be divided into electric parity "super center-of-mass" charges and magnetic parity "superspin" charges. The supermomentum charges are associated with ordinary gravitational-wave memory, and the super center-of-mass charges are associated with total (ordinary plus null) gravitational-wave memory, in the terminology of Bieri and Garfinkle. Superspin charges are associated with the ordinary piece of spin memory. Some of these charges can give rise to black-hole hair, as described by Strominger and Zhiboedov. We clarify how this hair evades the no-hair theorems.Comment: 18 pages, 1 table, no figures; some corrections and generalizations in v2; additional clarifications, corrections, and generalizations in v3; new table and subsection in v

    A power filter for the detection of burst sources of gravitational radiation in interferometric detectors

    Get PDF
    We present a filter for detecting gravitational wave signals from burst sources. This filter requires only minimal advance knowledge of the expected signal: i.e. the signal's frequency band and time duration. It consists of a threshold on the total power in the data stream in the specified signal band during the specified time. This filter is optimal (in the Neyman-Pearson sense) for signal searches where only this minimal information is available.Comment: 3 pages, RevTeX, GWDAW '99 proceedings contribution, submitted to Int. J. Modern Phys.

    Perturbing forces in the lunar gravitational potential, part 3 Final report

    Get PDF
    Spherical harmonics for evaluating perturbing forces on lunar satellite due to nonsymmetric mass distribution of moo

    Data analysis strategies for the detection of gravitational waves in non-Gaussian noise

    Get PDF
    In order to analyze data produced by the kilometer-scale gravitational wave detectors that will begin operation early next century, one needs to develop robust statistical tools capable of extracting weak signals from the detector noise. This noise will likely have non-stationary and non-Gaussian components. To facilitate the construction of robust detection techniques, I present a simple two-component noise model that consists of a background of Gaussian noise as well as stochastic noise bursts. The optimal detection statistic obtained for such a noise model incorporates a natural veto which suppresses spurious events that would be caused by the noise bursts. When two detectors are present, I show that the optimal statistic for the non-Gaussian noise model can be approximated by a simple coincidence detection strategy. For simulated detector noise containing noise bursts, I compare the operating characteristics of (i) a locally optimal detection statistic (which has nearly-optimal behavior for small signal amplitudes) for the non-Gaussian noise model, (ii) a standard coincidence-style detection strategy, and (iii) the optimal statistic for Gaussian noise.Comment: 5 pages RevTeX, 4 figure

    The significance of World War 1 in Jan Patočka’s Philosophy

    Get PDF

    RTCC requirements for mission G - Landing site determination using onboard observations, part 2 Final report

    Get PDF
    Computer programs for evaluation of telemetered rendezvous radar tracking data of orbiting command module and lunar module landing site determinatio

    Deep space network

    Get PDF
    Background, current status, and sites of Deep Space Network stations are briefly discussed
    corecore