1,235 research outputs found

    A Regional Assessment of Florida Manatees (Trichechus manatus latirostris) and the Caloosahatchee River, Florida

    Get PDF
    (58pp.

    Electric discharge for treatment of trace contaminants

    Get PDF
    A radio frequency glow discharge reactor is described for removing trace oxidizable contaminants from an oxygen bearing atmosphere. The reaction chamber is defined by an inner metal electrode facing a dielectric backed by an outer conductive electrode. In one embodiment, a conductive liquid forms the conductor of an outer electrode and cools the dielectric. A resonator coupled to a variable radio frequency source generates the high voltages for creating a glow discharge in the chamber at a predetermined pressure whereby the trace contaminants are oxidized into a few simple non-toxic products that may be easily recovered. The corresponding process for removal of trace contaminants from an oxygen-bearing atmosphere with high efficiency independent of the concentration level is also disclosed

    Inferring Chemical Reaction Patterns Using Rule Composition in Graph Grammars

    Get PDF
    Modeling molecules as undirected graphs and chemical reactions as graph rewriting operations is a natural and convenient approach tom odeling chemistry. Graph grammar rules are most naturally employed to model elementary reactions like merging, splitting, and isomerisation of molecules. It is often convenient, in particular in the analysis of larger systems, to summarize several subsequent reactions into a single composite chemical reaction. We use a generic approach for composing graph grammar rules to define a chemically useful rule compositions. We iteratively apply these rule compositions to elementary transformations in order to automatically infer complex transformation patterns. This is useful for instance to understand the net effect of complex catalytic cycles such as the Formose reaction. The automatically inferred graph grammar rule is a generic representative that also covers the overall reaction pattern of the Formose cycle, namely two carbonyl groups that can react with a bound glycolaldehyde to a second glycolaldehyde. Rule composition also can be used to study polymerization reactions as well as more complicated iterative reaction schemes. Terpenes and the polyketides, for instance, form two naturally occurring classes of compounds of utmost pharmaceutical interest that can be understood as "generalized polymers" consisting of five-carbon (isoprene) and two-carbon units, respectively

    Generic Strategies for Chemical Space Exploration

    Full text link
    Computational approaches to exploring "chemical universes", i.e., very large sets, potentially infinite sets of compounds that can be constructed by a prescribed collection of reaction mechanisms, in practice suffer from a combinatorial explosion. It quickly becomes impossible to test, for all pairs of compounds in a rapidly growing network, whether they can react with each other. More sophisticated and efficient strategies are therefore required to construct very large chemical reaction networks. Undirected labeled graphs and graph rewriting are natural models of chemical compounds and chemical reactions. Borrowing the idea of partial evaluation from functional programming, we introduce partial applications of rewrite rules. Binding substrate to rules increases the number of rules but drastically prunes the substrate sets to which it might match, resulting in dramatically reduced resource requirements. At the same time, exploration strategies can be guided, e.g. based on restrictions on the product molecules to avoid the explicit enumeration of very unlikely compounds. To this end we introduce here a generic framework for the specification of exploration strategies in graph-rewriting systems. Using key examples of complex chemical networks from sugar chemistry and the realm of metabolic networks we demonstrate the feasibility of a high-level strategy framework. The ideas presented here can not only be used for a strategy-based chemical space exploration that has close correspondence of experimental results, but are much more general. In particular, the framework can be used to emulate higher-level transformation models such as illustrated in a small puzzle game

    Embedding the Reissner-Nordstrom spacetime in Euclidean and Minkowski spaces

    Full text link
    We examine embedding diagrams of hypersurfaces in the Reissner-Nordstrom black hole spacetime. These embedding diagrams serve as useful tools to visualize the geometry of the hypersurfaces and of the whole spacetime in general.Comment: 13 pages, 10 figure

    The three-quark static potential in perturbation theory

    Full text link
    We study the three-quark static potential in perturbation theory in QCD. A complete next-to-leading order calculation is performed in the singlet, octets and decuplet channels and the potential exponentiation is demonstrated. The mixing of the octet representations is calculated. At next-to-next-to-leading order, the subset of diagrams producing three-body forces is identified in Coulomb gauge and its contribution to the potential calculated. Combining it with the contribution of the two-body forces, which may be extracted from the quark-antiquark static potential, we obtain the complete next-to-next-to-leading order three-quark static potential in the colour-singlet channel.Comment: 36 pages, 11 figures, version published in Phys.Rev.

    Computational Chemistry with RNA Secondary Structures

    Get PDF
    The secondary structure for nucleic acids provides a level of description that is both abstract enough to allow for efficient algorithms and realistic enough to provide a good approximate to the thermodynamic and kinetics properties of RNA structure formation. The secondary structure model has furthermore been successful in explaining salient features of RNA evolution in nature and in the test tube. In this contribution we review the computational chemistry of RNA secondary structures using a simplified algorithmic approach for explanation
    • …
    corecore