4 research outputs found

    Indirect Detection of Kaluza-Klein Dark Matter from Latticized Universal Dimensions

    Full text link
    We consider Kaluza-Klein dark matter from latticized universal dimensions. We motivate and investigate two different lattice models, where the models differ in the choice of boundary conditions. The models reproduce relevant features of the continuum model for Kaluza-Klein dark matter. For the model with simple boundary conditions, this is the case even for a model with only a few lattice sites. We study the effects of the latticization on the differential flux of positrons from Kaluza-Klein dark matter annihilation in the galactic halo. We find that for different choices of the compactification radius, the differential positron flux rapidly converges to the continuum model results as a function of the number of lattice sites. In addition, we consider the prospects for upcoming space-based experiments such as PAMELA and AMS-02 to probe the latticization effect.Comment: 25 pages, 9 figures, LaTeX. Final version published in JCA

    Improved Bounds on Universal Extra Dimensions and Consequences for LKP Dark Matter

    No full text
    We study constraints on models with a flat "Universal'' Extra Dimension in which all Standard Model fields propagate in the bulk. A significantly improved constraint on the compactification scale is obtained from the extended set of electroweak precision observables accurately measured at LEP1 and LEP2. We find a lower bound of M_c = R^{-1} > 700 (800) GeV at the 99% (95%) confidence level. We also discuss the implications of this constraint on the prospects for the direct and indirect detection of Kaluza-Klein dark matter in this model

    Improved bounds on universal extra dimensions and consequences for Kaluza-Klein dark matter

    No full text
    We study constraints on models with a flat "Universal'' Extra Dimension in which all Standard Model fields propagate in the bulk. A significantly improved constraint on the compactification scale is obtained from the extended set of electroweak precision observables accurately measured at LEP1 and LEP2. We find a lower bound of M_c = R^{-1} > 700 (800) GeV at the 99% (95%) confidence level. We also discuss the implications of this constraint on the prospects for the direct and indirect detection of Kaluza-Klein dark matter in this model
    corecore