35 research outputs found
Simplified liquid oxygen propellant conditioning concepts
Current liquid oxygen feed systems waste propellant and use hardware, unnecessary during flight, to condition the propellant at the engine turbopumps prior to launch. Simplified liquid oxygen propellant conditioning concepts are being sought for future launch vehicles. During a joint program, four alternative propellant conditioning options were studied: (1) passive recirculation; (2) low bleed through the engine; (3) recirculation lines; and (4) helium bubbling. The test configuration for this program was based on a vehicle design which used a main recirculation loop that was insulated on the downcomer and uninsulated on the upcomer. This produces a natural convection recirculation flow. The test article for this program simulated a feedline which ran from the main recirculation loop to the turbopump. The objective was to measure the temperature profile of this test article. Several parameters were varied from the baseline case to determine their effects on the temperature profile. These parameters included: flow configuration, feedline slope, heat flux, main recirculation loop velocity, pressure, bleed rate, helium bubbling, and recirculation lines. The heat flux, bleed rate, and recirculation configurations produced the greatest changes from the baseline temperature profile. However, the temperatures in the feedline remained subcooled. Any of the options studied could be used in future vehicles
Thermodynamic Vent System Performance Testing with Subcooled Liquid Methane and Gaseous Helium Pressurant
Due to its high specific impulse and favorable thermal properties for storage, liquid methane (LCH4) is being considered as a candidate propellant for exploration architectures. In order to gain an -understanding of any unique considerations involving micro-gravity pressure control with LCH4, testing was conducted at the Marshall Space Flight Center using the Multipurpose Hydrogen Test Bed (MHTB) to evaluate the performance of a spray-bar thermodynamic vent system (TVS) with subcooled LCH4 and gaseous helium (GHe) pressurant. Thirteen days of testing were performed in November 2006, with total tank heat leak conditions of about 715 W and 420 W at a fill level of approximately 90%. The TVS system was used to subcool the LCH4 to a liquid saturation pressure of approximately 55.2 kPa before the tank was pressurized with GHe to a total pressure of 165.5 kPa. A total of 23 TVS cycles were completed. The TVS successfully controlled the ullage pressure within a prescribed control band but did not maintain a stable liquid saturation pressure. This was likely. due to a TVS design not optimized for this particular propellant and test conditions, and possibly due to a large artificially induced heat input directly into the liquid. The capability to reduce liquid saturation pressure as well as maintain it within a prescribed control band, demonstrated that the TVS could be used to seek and maintain a desired liquid inlet temperature for an engine (at a cost of propellant lost through the TVS vent). One special test was conducted at the conclusion of the planned test activities. Reduction of the tank ullage pressure by opening the Joule-Thomson valve (JT) without operating the pump was attempted. The JT remained open for over 9300 seconds, resulting in an ullage pressure reduction of 30 kPa. The special test demonstrated the feasibility of using the JT valve for limited ullage pressure reduction in the event of a pump failure
Liquid Nitrogen (Oxygen Simulant) Thermodynamic Vent System Test Data Analysis
In designing systems for the long-term storage of cryogens in low-gravity (space) environments, one must consider the effects of thermal stratification on tank pressure that will occur due to environmental heat leaks. During low-gravity operations, a Thermodynamic Vent System (TVS) concept is expected to maintain tank pressure without propellant resettling. A series of TVS tests was conducted at NASA Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a liquid oxygen (LO2) simulant. The tests were performed at tank til1 levels of 90%, 50%, and 25%, and with a specified tank pressure control band. A transient one-dimensional TVS performance program is used to analyze and correlate the test data for all three fill levels. Predictions and comparisons of ullage pressure and temperature and bulk liquid saturation pressure and temperature with test data are presented
Large-Scale Demonstration of Liquid Hydrogen Storage with Zero Boiloff for In-Space Applications
Cryocooler and passive insulation technology advances have substantially improved prospects for zero-boiloff cryogenic storage. Therefore, a cooperative effort by NASA s Ames Research Center, Glenn Research Center, and Marshall Space Flight Center (MSFC) was implemented to develop zero-boiloff concepts for in-space cryogenic storage. Described herein is one program element - a large-scale, zero-boiloff demonstration using the MSFC multipurpose hydrogen test bed (MHTB). A commercial cryocooler was interfaced with an existing MHTB spray bar mixer and insulation system in a manner that enabled a balance between incoming and extracted thermal energy
Large, high quality single-crystals of the new Topological Kondo Insulator, SmB6
SmB6 has recently been predicted to be a Topological Kondo Insulator, the first strongly correlated heavy fermion material to exhibit topological surface states. High quality crystals are necessary to investigate the topological properties of this material. Single crystal growth of the rare earth hexaboride, SmB6, has been carried out by the floating zone technique using a high power xenon arc lamp image furnace. Large, high quality single-crystals are obtained by this technique. The crystals produced by the floating zone technique are free of contamination from flux materials and have been characterised by resistivity and magnetisation measurements. These crystals are ideally suited for the investigation of both the surface and bulk properties of SmB6
Large-Scale Liquid Hydrogen Tank Rapid Chill and Fill Testing for the Advanced Shuttle Upper Stage Concept
Cryogenic upper stages in the Space Shuttle program were prohibited primarily due to a safety risk of a 'return to launch site' abort. An upper stage concept addressed this concern by proposing that the stage be launched empty and filled using shuttle external tank residuals after the atmospheric pressure could no longer sustain an explosion. However, only about 5 minutes was allowed for tank fill. Liquid hydrogen testing was conducted within a near-ambient environment using the multipurpose hydrogen test bed 638.5 ft3 (18m3) cylindrical tank with a spray bar mounted longitudinally inside. Although the tank was filled within 5 minutes, chilldown of the tank structure was incomplete, and excessive tank pressures occurred upon vent valve closure. Elevated tank wall temperatures below the liquid level were clearly characteristic of film boiling. The test results have substantial implications for on-orbit cryogen transfer since the formation of a vapor film would be much less inhibited due to the reduced gravity. However, the heavy tank walls could become an asset in normal gravity testing for on-orbit transfer, i.e., if film boiling in a nonflight weight tank can be inhibited in normal gravity, then analytical modeling anchored with the data could be applied to reduced gravity environments with increased confidence
Nonlinear excitations in CsNiF3 in magnetic fields perpendicular to the easy plane
Experimental and numerical studies of the magnetic field dependence of the
specific heat and magnetization of single crystals of CsNiF3 have been
performed at 2.4 K, 2.9 K, and 4.2 K in magnetic fields up to 9 T oriented
perpendicular to the easy plane. The experimental results confirm the presence
of the theoretically predicted double peak structure in the specific heat
arising from the formation of nonlinear spin modes. The demagnetizing effects
are found to be negligible, and the overall agreement between the data and
numerical predictions is better than reported for the case when the magnetic
field was oriented in the easy plane. Demagnetizing effects might play a role
in generating the difference observed between theory and experiment in previous
work analyzing the excess specific heat using the sine-Gordon model.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
Cryogenic Technology Development for Exploration Missions
This paper reports the status and findings of different cryogenic technology research projects in support of the President s Vision for Space Exploration. The exploration systems architecture study is reviewed for cryogenic fluid management needs. It is shown that the exploration architecture is reliant on the cryogenic propellants of liquid hydrogen, liquid oxygen and liquid methane. Needs identified include: the key technologies of liquid acquisition devices, passive thermal and pressure control, low gravity mass gauging, prototype pressure vessel demonstration, active thermal control; as well as feed system testing, and Cryogenic Fluid Management integrated system demonstration. Then five NASA technology projects are reviewed to show how these needs are being addressed by technology research. Projects reviewed include: In-Space Cryogenic Propellant Depot; Experimentation for the Maturation of Deep Space Cryogenic Refueling Technology; Cryogenic Propellant Operations Demonstrator; Zero Boil-Off Technology Experiment; and Propulsion and Cryogenic Advanced Development. Advances are found in the areas of liquid acquisition of liquid oxygen, mass gauging of liquid oxygen via radio frequency techniques, computational modeling of thermal and pressure control, broad area cooling thermal control strategies, flight experiments for resolving low gravity issues of cryogenic fluid management. Promising results are also seen for Joule-Thomson pressure control devices in liquid oxygen and liquid methane and liquid acquisition of methane, although these findings are still preliminary
Solar Thermal Upper Stage Liquid Hydrogen Pressure Control Testing and Analytical Modeling
The demonstration of a unique liquid hydrogen (LH2) storage and feed system concept for solar thermal upper stage was cooperatively accomplished by a Boeing/NASA Marshall Space Flight Center team. The strategy was to balance thermodynamic venting with the engine thrusting timeline during a representative 30-day mission, thereby, assuring no vent losses. Using a 2 cubic m (71 cubic ft) LH2 tank, proof-of-concept testing consisted of an engineering checkout followed by a 30-day mission simulation. The data were used to anchor a combination of standard analyses and computational fluid dynamics (CFD) modeling. Dependence on orbital testing has been incrementally reduced as CFD codes, combined with standard modeling, continue to be challenged with test data such as this