26 research outputs found

    Mixing of Active and Sterile Neutrinos

    Full text link
    We investigate mixing of neutrinos in the ν\nuMSM (neutrino Minimal Standard Model), which is the MSM extended by three right-handed neutrinos. Especially, we study elements of the mixing matrix ΘαI\Theta_{\alpha I} between three left-handed neutrinos να\nu_\alpha (α=e,μ,τ\alpha = e,\mu,\tau) and two sterile neutrinos NIN_I (I=2,3I=2,3) which are responsible to the seesaw mechanism generating the suppressed masses of active neutrinos as well as the generation of the baryon asymmetry of the universe (BAU). It is shown that ΘeI\Theta_{eI} can be suppressed by many orders of magnitude compared with ΘμI\Theta_{\mu I} and ΘτI\Theta_{\tau I}, when the Chooz angle θ13\theta_{13} is large in the normal hierarchy of active neutrino masses. We then discuss the neutrinoless double beta decay in this framework by taking into account the contributions not only from active neutrinos but also from all the three sterile neutrinos. It is shown that N2N_2 and N3N_3 give substantial, destructive contributions when their masses are smaller than a few 100 MeV, and as a results ΘeI\Theta_{e I} receive no stringent constraint from the current bounds on such decay. Finally, we discuss the impacts of the obtained results on the direct searches of N2,3N_{2,3} in meson decays for the case when N2,3N_{2,3} are lighter than pion mass. We show that there exists the allowed region for N2,3N_{2,3} with such small masses in the normal hierarchy case even if the current bound on the lifetimes of N2,3N_{2,3} from the big bang nucleosynthesis is imposed. It is also pointed out that the direct search by using π+e++N2,3\pi^+ \to e^+ + N_{2,3} and K+e++N2,3K^+ \to e^+ + N_{2,3} might miss such N2,3N_{2,3} since the branching ratios can be extremely small due to the cancellation in ΘeI\Theta_{eI}, but the search by K+μ++N2,3K^+ \to \mu^+ + N_{2,3} can cover the whole allowed region by improving the measurement of the branching ratio by a factor of 5.Comment: 30 pages, 32 figure

    A map of the binding site for catalytic domain 5 in the core of a group II intron ribozyme.

    No full text
    Group II introns are ribozymes with a complex tertiary architecture that is of great interest as a model for RNA folding. Domain 5 (D5) is a highly conserved region of the intron that is considered one of the most critical structures in the catalytic core. Despite its central importance, the means by which D5 interacts with other core elements is unclear. To obtain a map of potential interaction sites, dimethyl sulfate was used to footprint regions of the intron that are involved in D5 binding. These studies were complemented by measurements of D5 binding to a series of truncated intron derivatives. In this way, the minimal region of the intron required for strong D5 association was defined and the sites most likely to represent thermodynamically significant positions of tertiary contact were identified. These studies show that ground-state D5 binding is mediated by tertiary contacts to specific regions of D1, including a tetraloop receptor and an adjacent three-way junction. In contrast, D2 and D3 are not found to stabilize D5 association. These data highlight the significance of D1-D5 interactions and will facilitate the identification of specific tertiary contacts between them
    corecore