434 research outputs found
Mapping Lyme Disease Incidence for Diagnostic and Preventive Decisions, Maryland
To support diagnostic and preventive decision making, we analyzed incidence of Lyme disease in Maryland on the zip code level. Areas of high incidence were identified on the Upper Eastern Shore of the Chesapeake Bay and in counties north and east of Baltimore City. These latter foci, especially, are not visible when mapping Lyme disease on the county level.
Economic Analysis of Alternative Flood Control Measures
Within the last few years, the growing realization that an effective flood control program must include non-structural measures (land use management and flood proofing) has resulted in Presidential Executive Order 11296 requiring Federal agencies to seek the optimum combination of structural and non-structural measures for flood control. The requirement has created a dilemma. No methodology is available for systematic evaluation of alternative combinations of structural and non-structural measures. Prospective procedures are too time consuming to be feasible under current financial and manpower limitations.
The only way out is to perform much of the planning process by digital computer. With this goal, two flood control planning programs have been developed. Each program systematically selects the optimum combination of channel improvement, flood proofing, and land use management by location within the flood plain and by time. The second program adds detention storage to the list of available alternatives. Both programs contain the entire planning process by going all the way from raw data to a selected optimum program of measure use in one run. However, the programs are not intended to produce a finished design. Their use should be followed by a final field check to verify the input data and preparation of the plans and specifications necessary for implementation.
The programs have been applied to a series of flood hazard areas in California and Kentucky and indicated an optimum flood control program in a small fraction of the time spent in current planning methods. They free the planning engineer from spending most of his time in routine calculations and allow more time for consideration of qualitative and intangible factors
Design of a state-of-the-art wheelchair
PFC del programa Erasmus EPSTreball desenvolupat dins el marc del programa 'European Project Semester'.State-of-the-art wheelchair. There are some people for whom transportation from place to
place is much harder than for the others – disabled people have to put much more effort in
moving than anyone else. Also nowadays the level of communication and socialization strongly
depends on how fast and effectively we are able to travel. The main aim of our project is to
deliver a design of an innovative wheelchair that will facilitate disabled people in moving.
Nevertheless the team had to also take in to account that the wheelchair as a product should be
competitive on the market and attractive to potential consumers. In order to design such a
wheelchair we decided to make a survey to find information about what the expectations of our
target group are. After the analysis of the survey results and intensive market research we were
able to choose from many interesting options the best one which meets the needs of users and is
also attractive from an economical point of view. The result is the design of an innovative
wheelchair in the Solid Works program. The new wheelchair has features that will make users
not susceptible to weather conditions and will also increase their mobility in the urban terrain.
It will bring a new quality onto the wheelchair market and will make disabled people more
mobile than ever
Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements
Coal mining accounts for ~12% of the total anthropogenic methane (CH4) emissions worldwide. The Upper Silesian Coal Basin (USCB), Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coal bed CH4 emissions into the atmosphere are poorly characterized. As part of the carbon dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May-June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150-300m downwind of five individual ventilation shafts in the USCB. In addition, we also measured δ13C-CH4, δ2H-CH4, ambient temperature, pressure, relative humidity, surface wind speed, and surface wind direction. We used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2Combining double low line0.7-0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified. As an alternative, we have developed three upscaling approaches, i.e., by scaling the European Pollutant Release and Transfer Register (E-PRTR) annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate, which are derived from the hourly emission inventory. These estimates are in the range of 256-383ktCH4yr-1 for the inverse Gaussian (IG) approach and 228-339ktCH4yr-1 for the mass balance (MB) approach. We have also estimated the total CO2 emissions from coal mining ventilation shafts based on the observed ratio of CH4/CO2 and found that the estimated regional CO2 emissions are not a major source of CO2 in the USCB. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions
Local-to-regional methane emissions from the Upper Silesian Coal Basin (USCB) quantified using UAV-based atmospheric measurements
Coal mining accounts for ~12% of the total anthropogenic methane (CH4) emissions worldwide. The Upper Silesian Coal Basin (USCB), Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coal bed CH4 emissions into the atmosphere are poorly characterized. As part of the carbon dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May-June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150-300m downwind of five individual ventilation shafts in the USCB. In addition, we also measured δ13C-CH4, δ2H-CH4, ambient temperature, pressure, relative humidity, surface wind speed, and surface wind direction. We used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2Combining double low line0.7-0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified. As an alternative, we have developed three upscaling approaches, i.e., by scaling the European Pollutant Release and Transfer Register (E-PRTR) annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate, which are derived from the hourly emission inventory. These estimates are in the range of 256-383ktCH4yr-1 for the inverse Gaussian (IG) approach and 228-339ktCH4yr-1 for the mass balance (MB) approach. We have also estimated the total CO2 emissions from coal mining ventilation shafts based on the observed ratio of CH4/CO2 and found that the estimated regional CO2 emissions are not a major source of CO2 in the USCB. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions.</p
Hepatitis E Virus Antibodies in Patients with Chronic Liver Disease
In the United States, the seroprevalence rate for hepatitis E virus (HEV) is ≈20%. This study examined HEV seroprevalence in persons with and without chronic liver disease. Our data indicate that HEV seropositivity is high in patients with chronic liver disease and that HEV seroprevalence increases significantly with age
Local to regional methane emissions from the Upper Silesia Coal Basin (USCB) quantified using UAV-based atmospheric measurements
Coal mining accounts for ~ 12 % of the total anthropogenic methane emissions worldwide. The Upper Silesian Coal Basin, Poland, where large quantities of CH4 are emitted to the atmosphere via ventilation shafts of underground hard coal (anthracite) mines, is one of the hot spots of methane emissions in Europe. However, coalbed CH4 emissions into the atmosphere are poorly characterized. As part of the Carbon Dioxide and CH4 mission 1.0 (CoMet 1.0) that took place in May – June 2018, we flew a recently developed active AirCore system aboard an unmanned aerial vehicle (UAV) to obtain CH4 and CO2 mole fractions 150–300 m downwind of five individual ventilation shafts in the USCB. In addition, we also measured δ13C-CH4, δ2H-CH4, ambient temperature, pressure, relative humidity, surface wind speeds and directions. We have used 34 UAV flights and two different approaches (inverse Gaussian approach and mass balance approach) to quantify the emissions from individual shafts. The quantified emissions were compared to both annual and hourly inventory data, and were used to derive the estimates of CH4 emissions in the USCB. We found a high correlation (R2 = 0.7 – 0.9) between the quantified and hourly inventory data-based shaft-averaged CH4 emissions, which in principle would allow regional estimates of CH4 emissions to be derived by upscaling individual hourly inventory data of all shafts. Currently, such inventory data is available only for the five shafts we quantified though. As an alternative, we have developed three upscaling approaches, i.e., by scaling the E-PRTR annual inventory, the quantified shaft-averaged emission rate, and the shaft-averaged emission rate that are derived from the hourly emission inventory. These estimates are in the range of 325 – 447 kt CH4/year for the inverse Gaussian approach and 268 – 347 kt CH4/year for the mass balance approach, respectively. This study shows that the UAV-based active AirCore system can be a useful tool to quantify local to regional point source methane emissions
Room Temperature Ferrimagnetism and Ferroelectricity in Strained, Thin Films of BiFe0.5Mn0.5O3.
Highly strained films of BiFe0.5Mn0.5O3 (BFMO) grown at very low rates by pulsed laser deposition were demonstrated to exhibit both ferrimagnetism and ferroelectricity at room temperature and above. Magnetisation measurements demonstrated ferrimagnetism (TC ∼ 600K), with a room temperature saturation moment (MS ) of up to 90 emu/cc (∼ 0.58 μB /f.u) on high quality (001) SrTiO3. X-ray magnetic circular dichroism showed that the ferrimagnetism arose from antiferromagnetically coupled Fe3+ and Mn3+. While scanning transmission electron microscope studies showed there was no long range ordering of Fe and Mn, the magnetic properties were found to be strongly dependent on the strain state in the films. The magnetism is explained to arise from one of three possible mechanisms with Bi polarization playing a key role. A signature of room temperature ferroelectricity in the films was measured by piezoresponse force microscopy and was confirmed using angular dark field scanning transmission electron microscopy. The demonstration of strain induced, high temperature multiferroism is a promising development for future spintronic and memory applications at room temperature and above.This is the final published version. It's also available from Advanced Functional Materials: http://onlinelibrary.wiley.com/doi/10.1002/adfm.201401464/full
Measurement of the transverse target and beam-target asymmetries in meson photoproduction at MAMI
We present new data for the transverse target asymmetry T and the very first
data for the beam-target asymmetry F in the
reaction up to a center-of-mass energy of W=1.9 GeV. The data were obtained
with the Crystal-Ball/TAPS detector setup at the Glasgow tagged photon facility
of the Mainz Microtron MAMI. All existing model predictions fail to reproduce
the new data indicating a significant impact on our understanding of the
underlying dynamics of meson photoproduction. The peculiar nodal
structure observed in existing T data close to threshold is not confirmed.Comment: 5 pages, 3 figures, accepted for publication in PR
T and F asymmetries in π0 photoproduction on the proton
The γp→π0p reaction was studied at laboratory photon energies from 425 to 1445 MeV with a transversely polarized target and a longitudinally polarized beam. The beam-target asymmetry F was measured for the first time and new high precision data for the target asymmetry T were obtained. The experiment was performed at the photon tagging facility of the Mainz Microtron (MAMI) using the Crystal Ball and TAPS photon spectrometers. The polarized cross sections were expanded in terms of associated Legendre functions and compared to recent predictions from several partial-wave analyses. The impact of the new data on our understanding of the underlying partial-wave amplitudes and baryon resonance contributions is discussed
- …