578 research outputs found

    Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments

    Get PDF
    Graded density impactors (GDIs) are used to dynamically compress materials to extreme conditions. Two modifications to a previously developed Mg-Cu-W GDI are made in this work before using it in a dynamic compression experiment: Mg is replaced with Al and a Ta disk is glued to the back. The Mg phase is replaced by Al because FCC Al remains solid to higher pressure along its Hugoniot compared to Mg. The addition of the Ta disk creates a constant particle velocity regime and facilitates a definition of peak pressure states. Microstructure analysis, profilometry, and ultrasonic C-scans of the Al-Cu-W GDI all confirm excellent uniformity. We evaluated signal variation in the radial direction of a dynamically compressed Al-LiF bilayer target to evaluate the contribution of spatial nonuniformity to errors. Velocity traces from five photon Doppler velocimetry (PDV) probes located at different radial distances from the center of the target varied at most by 1.1% with a root mean square of 0.3% during the compression ramp, demonstrating low PDV measurement error over a relatively large experimental area. The experimental PDV data also agrees well with 1D simulations that use inputs from predictive characterization models developed for the material properties resulting from tape casting, laminating, and powder consolidation processes. Low measurement error during quasi-isentropic compression, leading to better precision, ensures a robust platform to reach extreme compression and low-temperature recovery states and facilitates discovery via synthesis, quenching, and preservation of new high-pressure phases

    Application of Al-Cu-W-Ta graded density impactors in dynamic ramp compression experiments

    Get PDF
    Graded density impactors (GDIs) are used to dynamically compress materials to extreme conditions. Two modifications to a previously developed Mg-Cu-W GDI are made in this work before using it in a dynamic compression experiment: Mg is replaced with Al and a Ta disk is glued to the back. The Mg phase is replaced by Al because FCC Al remains solid to higher pressure along its Hugoniot compared to Mg. The addition of the Ta disk creates a constant particle velocity regime and facilitates a definition of peak pressure states. Microstructure analysis, profilometry, and ultrasonic C-scans of the Al-Cu-W GDI all confirm excellent uniformity. We evaluated signal variation in the radial direction of a dynamically compressed Al-LiF bilayer target to evaluate the contribution of spatial nonuniformity to errors. Velocity traces from five photon Doppler velocimetry (PDV) probes located at different radial distances from the center of the target varied at most by 1.1% with a root mean square of 0.3% during the compression ramp, demonstrating low PDV measurement error over a relatively large experimental area. The experimental PDV data also agrees well with 1D simulations that use inputs from predictive characterization models developed for the material properties resulting from tape casting, laminating, and powder consolidation processes. Low measurement error during quasi-isentropic compression, leading to better precision, ensures a robust platform to reach extreme compression and low-temperature recovery states and facilitates discovery via synthesis, quenching, and preservation of new high-pressure phases

    Surveying Standard Model Flux Vacua on T6/Z2×Z2T^6/Z_2\times Z_2

    Full text link
    We consider the SU(2)LxSU(2)R Standard Model brane embedding in an orientifold of T6/Z2xZ2. Within defined limits, we construct all such Standard Model brane embeddings and determine the relative number of flux vacua for each construction. Supersymmetry preserving brane recombination in the hidden sector enables us to identify many solutions with high flux. We discuss in detail the phenomenology of one model which is likely to dominate the counting of vacua. While Kahler moduli stabilization remains to be fully understood, we define the criteria necessary for generic constructions to have fixed moduli.Comment: 30 pages, LaTeX, v2: added reference

    Photoproduction of mesons off nuclei

    Full text link
    Recent results for the photoproduction of mesons off nuclei are reviewed. These experiments have been performed for two major lines of research related to the properties of the strong interaction. The investigation of nucleon resonances requires light nuclei as targets for the extraction of the isospin composition of the electromagnetic excitations. This is done with quasi-free meson photoproduction off the bound neutron and supplemented with the measurement of coherent photoproduction reactions, serving as spin and/or isospin filters. Furthermore, photoproduction from light and heavy nuclei is a very efficient tool for the study of the interactions of mesons with nuclear matter and the in-medium properties of hadrons. Experiments are currently rapidly developing due to the combination of high quality tagged (and polarized) photon beams with state-of-the-art 4pi detectors and polarized targets

    Quasi-free photoproduction of η-mesons off 3He nuclei

    Get PDF
    Quasi-free photoproduction of η-mesons has been measured off nucleons bound in 3He nuclei for incident photon energies from the threshold region up to 1.4 GeV. The experiment was performed at the tagged photon facility of the Mainz MAMI accelerator with an almost 4π covering electromagnetic calorimeter, combining the TAPS and Crystal Ball detectors. The η-mesons were detected in coincidence with the recoil nucleons. This allowed a comparison of the production cross section off quasi-free protons and quasi-free neutrons and a full kinematic reconstruction of the final state, eliminating effects from nuclear Fermi motion. In the S11(1535) resonance peak, the data agree with the neutron/proton cross section ratio extracted from measurements with deuteron targets. More importantly, the prominent structure observed in photoproduction off quasi-free neutrons bound in the deuteron is also clearly observed. Its parameters (width, strength) are consistent with the expectations from the deuteron results. On an absolute scale the cross sections for both quasi-free protons and neutrons are suppressed with respect to the deuteron target pointing to significant nuclear final-state interaction effects
    corecore