28 research outputs found

    The putative tumour suppressor protein Latexin is secreted by prostate luminal cells and is downregulated in malignancy

    Get PDF
    Loss of latexin (LXN) expression negatively correlates with the prognosis of several human cancers. Despite association with numerous processes including haematopoietic stem cell (HSC) fate, inflammation and tumour suppression, a clearly defined biological role for LXN is still lacking. Therefore, we sought to understand LXN expression and function in the normal and malignant prostate to assess its potential as a therapeutic target. Our data demonstrate that LXN is highly expressed in normal prostate luminal cells but downregulated in high Gleason grade cancers. LXN protein is both cytosolic and secreted by prostate cells and expression is directly and potently upregulated by all-trans retinoic acid (atRA). Whilst overexpression of LXN in prostate epithelial basal cells did not affect cell fate, LXN overexpression in the luminal cancer line LNCaP reduced plating efficiency. Transcriptome analysis revealed that LXN overexpression had no direct effects on gene expression but had significant indirect effects on important genes involved in both retinoid metabolism and IFN-associated inflammatory responses. These data highlight a potential role for LXN in retinoid signaling and inflammatory pathways. Investigating the effects of LXN on immune cell function in the tumour microenvironment (TME) may reveal how observed intratumoural loss of LXN affects the prognosis of many adenocarcinomas

    Disparate metabolic response to fructose feeding between different mouse strains

    Get PDF
    Diets enriched in fructose (FR) increase lipogenesis in the liver, leading to hepatic lipid accumulation and the development of insulin resistance. Previously, we have shown that in contrast to other mouse strains, BALB/c mice are resistant to high fat diet-induced metabolic deterioration, potentially due to a lack of ectopic lipid accumulation in the liver. In this study we have compared the metabolic response of BALB/c and C57BL/6 (BL6) mice to a fructose-enriched diet. Both strains of mice increased adiposity in response to FR-feeding, while only BL6 mice displayed elevated hepatic triglyceride (TAG) accumulation and glucose intolerance. The lack of hepatic TAG accumulation in BALB/c mice appeared to be linked to an altered balance between lipogenic and lipolytic pathways, while the protection from fructose-induced glucose intolerance in this strain was likely related to low levels of ER stress, a slight elevation in insulin levels and an altered profile of diacylglycerol species in the liver. Collectively these findings highlight the multifactorial nature of metabolic defects that develop in response to changes in the intake of specific nutrients and the divergent response of different mouse strains to dietary challenges

    Regulation of glucose homeostasis and insulin action by ceramide acyl-chain length: A beneficial role for very long-chain sphingolipid species

    No full text
    In a recent study, we showed that in response to high fat feeding C57BL/6, 129X1, DBA/2 and FVB/N mice all developed glucose intolerance, while BALB/c mice displayed minimal deterioration in glucose tolerance and insulin action. Lipidomic analysis of livers across these five strains has revealedmarked strain-specific differences in ceramide (Cer) and sphingomyelin (SM)specieswith high-fat feeding;with increases in C16-C22 (long-chain) and reductions in C N 22 (very long-chain) Cer and SM species observed in the four strains that developed HFDinduced glucose intolerance. Intriguingly, the opposite pattern was observed in sphingolipid species in BALB/c mice. These strain-specific changes in sphingolipid acylation closely correlated with ceramide synthase 2 (CerS2) protein content and activity, with reduced CerS2 levels/activity observed in glucose intolerant strains and increased content in BALB/c mice. Overexpression of CerS2 in primary mouse hepatocytes induced a specific elevation in very long-chain Cer, but despite the overall increase in ceramide abundance, there was a substantial improvement in insulin signal transduction, as well as decreased ER stress and gluconeogenic markers. Overall our findings suggest that very long-chain sphingolipid species exhibit a protective role against the development of glucose intolerance and hepatic insulin resistance

    A new digital dark age? Collaborative web tools, social media and long term preservation

    Get PDF
    This paper examines the impact of exciting new approaches to open data sharing, collaborative web tools and social media on the sustainability of archaeological data. The archiving, reuse and re-analysis of data is often considered intrinsic to archaeological practice, not least because of the destructive nature of excavation. The idea that the pace of adoption of new digital technologies can outstrip the development of the infrastructure required for sustainable access to its outputs, ultimately leading to the loss of data, is sometimes referred to as the ‘Digital Dark Age’ problem. While strenuous efforts have been made to address this issue, the recent rapid uptake of a new wave of tools to enhance access, promote wider dialogue and gather data has the potential to recreate this problem. This is particularly true because of the volatile technical, legal and commercial contexts in which much of this work takes place. This paper explores these problems, discusses potential changes in the nature of archaeological dialogue and information sharing, and posits solutions that might mitigate a second ‘Digital Dark Age’

    Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance

    No full text
    The endothelial cell adhesion molecule E-selectin is a key component of the bone marrow hematopoietic stem cell (HSC) vascular niche regulating balance between HSC self-renewal and commitment. We now report in contrast, E-selectin directly triggers signaling pathways that promote malignant cell survival and regeneration. Using acute myeloid leukemia (AML) mouse models, we show AML blasts release inflammatory mediators that upregulate endothelial niche E-selectin expression. Alterations in cell-surface glycosylation associated with oncogenesis enhances AML blast binding to E-selectin and enable promotion of pro-survival signaling through AKT/NF-κB pathways. In vivo AML blasts with highest E-selectin binding potential are 12-fold more likely to survive chemotherapy and main contributors to disease relapse. Absence (in Sele hosts) or therapeutic blockade of E-selectin using small molecule mimetic GMI-1271/Uproleselan effectively inhibits this niche-mediated pro-survival signaling, dampens AML blast regeneration, and strongly synergizes with chemotherapy, doubling the duration of mouse survival over chemotherapy alone, whilst protecting endogenous HSC

    A selective inhibitor of ceramide synthase 1 reveals a novel role in fat metabolism

    No full text
    Ceramides are signalling molecules that regulate several physiological functions including insulin sensitivity. Here the authors report a selective ceramide synthase 1 inhibitor that counteracts lipid accumulation within the muscle and adiposity by increasing fatty acid oxidation but without affecting insulin sensitivity in mice fed with an obesogenic diet
    corecore