568 research outputs found

    Ion acceleration from laser-driven electrostatic shocks

    Get PDF
    Multi-dimensional particle-in-cell simulations are used to study the generation of electrostatic shocks in plasma and the reflection of background ions to produce high-quality and high-energy ion beams. Electrostatic shocks are driven by the interaction of two plasmas with different density and/or relative drift velocity. The energy and number of ions reflected by the shock increase with increasing density ratio and relative drift velocity between the two interacting plasmas. It is shown that the interaction of intense lasers with tailored near-critical density plasmas allows for the efficient heating of the plasma electrons and steepening of the plasma profile at the critical density interface, leading to the generation of high-velocity shock structures and high-energy ion beams. Our results indicate that high-quality 200 MeV shock-accelerated ion beams required for medical applications may be obtained with current laser systems.Comment: 33 pages, 12 figures, accepted for publication in Physics of Plasma

    Laser-driven shock acceleration of monoenergetic ion beams

    Get PDF
    We show that monoenergetic ion beams can be accelerated by moderate Mach number collisionless, electrostatic shocks propagating in a long scale-length exponentially decaying plasma profile. Strong plasma heating and density steepening produced by an intense laser pulse near the critical density can launch such shocks that propagate in the extended plasma at high velocities. The generation of a monoenergetic ion beam is possible due to the small and constant sheath electric field associated with the slowly decreasing density profile. The conditions for the acceleration of high-quality, energetic ion beams are identified through theory and multidimensional particle-in-cell simulations. The scaling of the ion energy with laser intensity shows that it is possible to generate ∼200\sim 200 MeV proton beams with state-of-the-art 100 TW class laser systems.Comment: 13 pages, 4 figures, accepted for publication in Physical Review Letter

    Understanding graft-versus-host disease. Preliminary findings regarding the effects of exercise in affected patients

    Get PDF
    Advances in this century regarding allogeneic hematopoietic stem cell transplantation (allo-HSCT) have led to an expanding population of long-term survivors, many of whom suffer severe side effects, particularly those related to graft-versushost disease (GVHD), a potentially multi-systemic disorder caused by immunoeffector donor lymphocytes that destroy host tissues. The GVHD, especially in its chronic form (cGVHD), generates considerable morbidity and compromises the physical capacity of patients. We have reviewed the main pathophysiological aspects of the disease as well as the data available on the effects of exercise in GVHD, based on animal and human patient research. Although exercise training as an adjunct therapy to improve health outcomes after allo-HSCT shows promise (particularly, this lifestyle intervention can improve physical fitness and possibly immune function while attenuating fatigue), there is a need for more randomized control trials that focus specifically on GVHD

    One-to-one full scale simulations of laser wakefield acceleration using QuickPIC

    Get PDF
    We use the quasi-static particle-in-cell code QuickPIC to perform full-scale, one-to-one LWFA numerical experiments, with parameters that closely follow current experimental conditions. The propagation of state-of-the-art laser pulses in both preformed and uniform plasma channels is examined. We show that the presence of the channel is important whenever the laser self-modulations do not dominate the propagation. We examine the acceleration of an externally injected electron beam in the wake generated by 10 J laser pulses, showing that by using ten-centimeter-scale plasma channels it is possible to accelerate electrons to more than 4 GeV. A comparison between QuickPIC and 2D OSIRIS is provided. Good qualitative agreement between the two codes is found, but the 2D full PIC simulations fail to predict the correct laser and wakefield amplitudes.Comment: 5 pages, 5 figures, accepted for publication IEEE TPS, Special Issue - Laser & Plasma Accelerators - 8/200

    The Era of Smartphones: Back to Our Biological Makeup?

    Get PDF
    Physical inactivity is a major modifiable cardiovascular risk factor that has become a growing health problem in the 21st century: 83% of adolescents aged 13-15 years and approximately 1/3 of adults worldwide are inactive, that is, not meeting the minimum international physical activity (PA) recommendations (=150 minutes/week of moderate to vigorous PA) [1, 2]. Thus, the PA levels of the general population, especially of individuals at cardiovascular risk, should be routinely assessed by health care professionals, as it has been recently recommended by the American Heart Association [3]. To this end, accelerometers (usually attached to an elastic belt around the waist) allow objective quantification of PA by providing continuous recordings. At least 3 to 5 days of accelerometer monitoring (including weekend days) are required to determine habitual PA, and it is generally accepted that the device should be worn for =10 hours/day [4]. For this reason, the simple and inexpensive method of PA questionnaires is more widely used and generally better accepted. Unfortunately, the validity of self-reported PA is questionable..

    Strenuous exercise worse than sedentarism?

    Get PDF
    Schnohr et al. (1) reported a U-shaped association between all-cause mortality and exercise dose in a Danish cohort. Jogging 1 to 2.4 h/week was associated with the lowest mortality, whereas jogging >3 times/week was no better than being inactive and was worse than light jogging (adjusted hazard ratio [HR]: 9.08; 95% confidence interval [CI]: 1.87 to 44.01). Furthermore, older (61.3 16.2 years) sedentary nonjoggers with cardiovascular disease (CVD) risk factors...

    Genetic variants in the PPARD-PPARGC1A-NRF-TFAM mitochondriogenesis pathway are neither associated with muscle characteristics nor physical performance in elderly

    Get PDF
    We studied the influence of genetic polymorphisms involved in the PPARD-PPARGC1A-NRF-TFAM mitochondriogenesis pathway (rs6949152, rs12594956, rs2267668, rs8192678, and rs1937) on muscle phenotypes (thigh muscles’ cross-sectional, maximal handgrip-strength and 30-second chair stand-test) and Barthel index in Caucasian (Spanish) community-dwelling old people (n=75, 21 men, 54 women; 71–94 years). We found no significant genetic associations with the studied phenotypes. Multiple, com- plex gene-environment and gene-gene interactions which are yet to be determined are likely to play a more determinant role
    • …
    corecore