108 research outputs found

    Visual Experiences during Paralysis

    Get PDF
    Rationale: Paralyzed human volunteers (n = 6) participated in several studies the primary one of which required full neuromuscular paralysis while awake. After the primary experiment, while still paralyzed and awake, subjects undertook studies of humor and of attempted eye-movement. The attempted eye-movements tested a central, intentional component to one’s internal visual model and are the subject of this report. Methods: Subjects reclined in a supportive chair and were ventilated after paralysis (cisatracurium, 20 mg intravenously). In illumination, subjects were requested to focus alternately on the faces of investigators standing on the left and the right within peripheral vision. In darkness, subjects were instructed to look away from a point source of light. Subjects were to report their experiences after reversal of paralysis. Results: During attempted eye-movement in illumination, one subject had an illusion of environmental movement but four subjects perceived faces as clearly as if they were in central vision. In darkness, four subjects reported movement of the target light in the direction of attempted eye-movements and three could control the movement of the light at will. Conclusion: The hypothesis that internal visual models receive intended ocular-movement-information directly from oculomotor centers is strengthened by this evidence

    Visual Experiences during Paralysis

    Get PDF
    Rationale: Paralyzed human volunteers (n = 6) participated in several studies the primary one of which required full neuromuscular paralysis while awake. After the primary experiment, while still paralyzed and awake, subjects undertook studies of humor and of attempted eye-movement. The attempted eye-movements tested a central, intentional component to one’s internal visual model and are the subject of this report. Methods: Subjects reclined in a supportive chair and were ventilated after paralysis (cisatracurium, 20 mg intravenously). In illumination, subjects were requested to focus alternately on the faces of investigators standing on the left and the right within peripheral vision. In darkness, subjects were instructed to look away from a point source of light. Subjects were to report their experiences after reversal of paralysis. Results: During attempted eye-movement in illumination, one subject had an illusion of environmental movement but four subjects perceived faces as clearly as if they were in central vision. In darkness, four subjects reported movement of the target light in the direction of attempted eye-movements and three could control the movement of the light at will. Conclusion: The hypothesis that internal visual models receive intended ocular-movement-information directly from oculomotor centers is strengthened by this evidence

    Gender and Family Systems

    Get PDF
    Author version made available in accordance with publisher copyright policy. The final publication is available at link.springer.com.EEG recording is a time consuming operation during which the subject is expected to stay still for a long time performing tasks. It is reasonable to expect some uctuation in the level of focus toward the performed task during the task period. This study is focused on investi- gating various approaches for emphasizing regions of interest during the task period. Dividing the task period into three segments of beginning, middle and end, is expectable to improve the overall classi cation per- formance by changing the concentration of the training samples toward regions in which subject had better concentration toward the performed tasks. This issue is investigated through the use of techniques such as i) replication, ii) biasing, and iii) overlapping. A dataset with 4 motor imagery tasks (BCI Competition III dataset IIIa) is used. The results il- lustrate the existing variations within the potential of di erent segments of the task period and the feasibility of techniques that focus the training samples toward such regions

    Hand classification of fMRI ICA noise components

    Get PDF
    We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets

    Constitutive spectral EEG peaks in the gamma range: suppressed by sleep, reduced by mental activity and resistant to sensory stimulation

    Get PDF
    This Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.Objective: In a systematic study of gamma activity in neuro-psychiatric disease, we unexpectedly observed distinctive, apparently persistent, electroencephalogram (EEG) spectral peaks in the gamma range (25–100 Hz). Our objective, therefore, was to examine the incidence, distribution and some of the characteristics of these peaks. Methods: High sample-rate, 128-channel, EEG was recorded in 603 volunteers (510 with neuropsychiatric disorders, 93 controls), whilst performing cognitive tasks, and converted to power spectra. Peaks of spectral power, including in the gamma range, were determined algorithmically for all electrodes. To determine if peaks were stable, 24-h ambulatory recordings were obtained from 16 subjects with peaks. In 10 subjects, steady-state responses to stimuli at peak frequency were compared with off-peak-frequency stimulation to determine if peaks were a feature of underlying network resonances and peaks were evaluated with easy and hard versions of oddball tasks to determine if peaks might be influenced by mental effort. Results: 57% of 603 subjects exhibited peaks >2 dB above trough power at or above 25 Hz. Larger peaks (>5 dB) were present in 13% of subjects. Peaks were distributed widely over the scalp, more frequent centrally. Peaks were present through the day and were suppressed by slow-wave-sleep. Steady-state responses were the same with on- or off-peak sensory stimulation. In contrast, mental effort resulted in reductions in power and frequency of gamma peaks, although the suppression did not correlate with level of effort. Conclusions: Gamma EEG can be expressed constitutively as concentrations of power in narrow or wide frequency bands that play an, as yet, unknown role in cognitive activity. Significance: These findings expand the described range of rhythmic EEG phenomena. In particular, in addition to evoked, induced and sustained gamma band activity, gamma activity can be present constitutively in spectral peaks

    Detecting synchrony in EEG: A comparative study of functional connectivity measures

    Get PDF
    © 2018 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (December 2018) in accordance with the publisher’s archiving policyIn neuroscience, there is considerable current interest in investigating the connections between different parts of the brain. EEG is one modality for examining brain function, with advantages such as high temporal resolution and low cost. Many measures of connectivity have been proposed, but which is the best measure to use? In this paper, we address part of this question: which measure is best able to detect connections that do exist, in the challenging situation of non-stationary and noisy data from nonlinear systems, like EEG. This requires knowledge of the true relationship between signals, hence we compare 26 measures of functional connectivity on simulated data (unidirectionally coupled Hénon maps, and simulated EEG). To determine whether synchrony is detected, surrogate data were generated and analysed, and a threshold determined from the surrogate ensemble. No measure performed best in all tested situations. The correlation and coherence measures performed best on stationary data with many samples. S-estimator, correntropy, mean-phase coherence (Hilbert), mutual information (kernel), nonlinear interdependence (S) and nonlinear interdependence (N) performed most reliably on non-stationary data with small to medium window sizes. Of these, correlation and S-estimator have execution times that scale slower with the number of channels and the number of samples

    Understanding species responses in a changing world by examining the predatory behaviour of southern calamari to changes on temperature

    Get PDF
    Predator–prey interactions are key drivers in structuring communities, with the potential to substantially impact the whole ecosystem when important predators and prey are involved. Squid are voracious predators and also important prey for other top predators. To date, the available data suggests that under current and projected ocean warming, the behaviour of ectotherms could be modified (for example, through individual movement, predator avoidance and escape speed), yet little is known of the influence of temperature on the predatory behaviour of cephalopods. Here, the predatory behaviour of adult southern calamari (Sepioteuthis australis) under different thermal scenarios was examined demonstrating that squid exhibited different behaviour and performance capabilities across temperature treatments. Overall, attempts of squid to capture prey were faster and more persistent at higher temperature treatments (25°C), suggesting that individuals need to increase their food consumption rate, presumably associated with the higher energetic costs of living at elevated temperatures. However, we also observed a possible decrease in capture efficiency and increased prey handling time at higher temperatures suggesting that implications for energetic balance are not straightforward and that trade-offs need to be carefully explored. As cephalopods are ecologically important species acting as key links in food webs around the world, the results here could have important implications for the dynamics of many marine ecosystems in future
    corecore