6,027 research outputs found
Muon ID- Taking Care of Lower Momenta Muons
In the Muon package under study, the tracks are extrapolated using an
algorithm which accounts for the magnetic field and the ionization (dE/dx). We
improved the calculation of the field dependent term to increase the muon
detection efficiency at lower momenta using a Runge-Kutta method. The muon
identification and hadron separation in b-bbar jets is reported with the
improved software. In the same framework, the utilization of the Kalman filter
is introduced. The principle of the Kalman filter is described in some detail
with the propagation matrix, with the Runge-Kutta term included, and the effect
on low momenta single muons particles is described.Comment: PDF,5pages,2 Figures,1 Table,Presented at the 2005 International
Linear Collider Physics and Detectors Workshop,Snowmass,Colorado,14-27 Aug.
2005, PSN1011 in the proceedin
Recommended from our members
Methods and compositions for stimulating T-lymphocytes
Disclosed are methods, compositions, antibodies, and therapeutic kits for use in stimulating cytotoxic T-lymphocytes and generating immune responses against epitopes of protooncogenes. Novel peptides are described which have been shown to stimulate cytotoxic T-lymphocytes, and act as antigens in generation of oncogenic epitope-recognizing antibodies. Methods are disclosed for use in treating various proliferative disorders, and diagnosing HER-2/neu-containing cells; also disclosed are therapeutic kits useful in the treatment of cancer and production of potential anti-cancer vaccines.Board of Regents, University of Texas Syste
Observed distribution functions of H, He, C, O, and Fe in corotating energetic particle streams: Implications for interplanetary acceleration and propagation
Distribution functions for H, He, C, O, and Fe derived from our IMP 8 measurements of approximately 0.15 to approximately 8 MeV/nucleon particles in three corotating streams observed near earth are shown to have a simple exponential dependence on the particle speed. The e-folding speed, v sub o, is typically 0.01c, is found to be the same for the distribution functions of all elements examined, and varies little from one corotating event to the next. The relative abundances of energetic particles in these events resemble most closely the solar coronal composition and, thus, presumably that of the solar wind. These results may imply that the acceleration of these particles, which occurs in corotating interaction regions at several AU from the sun, is by a statistical process
The Fokker-Planck coefficient for pitch-angle scattering of cosmic rays
For the case of homogeneous, isotropic magnetic field fluctuations, it is shown that most theories which are based on the quasi-linear and adiabatic approximation yield the same integral for the Fokker-Planck coefficient for the pitch angle scattering of cosmic rays. For example, despite apparent differences, the theories due to Jokipii and to Klimas and Sandri yield the same integral. It is also shown, however, that this integral in most cases has been evaluated incorrectly in the past. For large pitch angles these errors become significant, and for pitch angles of 90 deg the actual Fokker-Planck coefficient contains a delta function. The implications for these corrections relating cosmic ray diffusion coefficients to observed properties of the interplanetary magnetic field are discussed
The case for a common spectrum of particles accelerated in the heliosphere: Observations and theory
In the last decade a significant discovery has been made in the heliosphere: the spectrum of particles accelerated in both the inner heliosphere and in the heliosheath is the same: a power law in particle speed with a spectral index of −5, when the spectrum is expressed as a distribution function; or equivalently, a differential intensity spectrum that is a power law in energy with a spectral index of −1.5. In the inner heliosphere this common spectrum occurs at quite low energies and is most evident in instruments designed to measure suprathermal particles. In the heliosheath, the common spectrum is observed over the full energy range of the Voyager energetic particle instruments, up to energies of ~100 MeV. The remarkable discovery of a common spectrum is compounded by the realization that no traditional acceleration mechanism, i.e., diffusive shock acceleration or stochastic acceleration, can account for the common spectrum. There is thus an opportunity to once again demonstrate the relevance of heliospheric physics by developing a new acceleration mechanism that yields the common spectrum, with the expectation that such a new acceleration mechanism will find broader applications in astrophysics. In this paper, the observations of the common spectrum in the heliosphere are summarized, with emphasis on those that best reveal the conditions in which the acceleration must operate. Then, building on earlier work, a complete derivation is presented of an acceleration mechanism, a pump acceleration mechanism, that yields the common spectrum, and the various subtleties associated with this derivation are discussed. Key Points Particles accelerated in the heliosphere have a common spectrum Traditional acceleration mechanisms do not yield the common spectrum A pump acceleration mechanism does yield the common spectrumPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/110081/1/jgra51409.pd
Acceleration of Galactic Cosmic Rays in the Interstellar Medium
Challenges have arisen to diffusive shock acceleration as the primary means to accelerate galactic cosmic rays (GCRs) in the interstellar medium. Diffusive shock acceleration is also under challenge in the heliosphere, where at least the simple application of diffusive shock acceleration cannot account for observations. In the heliosphere, a new acceleration mechanism has been invented—a pump mechanism, driven by ambient turbulence, in which particles are pumped up in energy out of a low-energy core particle population through a series of adiabatic compressions and expansions—that can account for observations not only at shocks but in quiet conditions in the solar wind and throughout the heliosheath. In this paper, the pump mechanism is applied to the acceleration of GCRs in the interstellar medium. With relatively straightforward assumptions about the magnetic field in the interstellar medium, and how GCRs propagate in this field, the pump mechanism yields (1) the overall shape of the GCR spectrum, a power law in particle kinetic energy, with a break at the so-called knee in the GCR spectrum to a slightly steeper power-law spectrum. (2) The rigidity dependence of the H/He ratio observed from the PAMELA satellite instrument.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98584/1/0004-637X_744_2_127.pd
Muon ID at the ILC
This paper describes a new way to reconstruct and identify muons with high efficiency and high pion rejection. Since muons at the ILC are often produced with or in jets, for many of the physics channels of interest[1], an efficient algorithm to deal with the identification and separation of particles within jets is important. The algorithm at the core of the method accounts for the effects of the magnetic field and for the loss of energy by charged particles due to ionization in the detector. We have chosen to develop the analysis within the setup of one of the Linear Collider Concept Detectors adopted by the US. Within b-pair production jets, particles cover a wide range in momenta; however ~ 80% of the particles have a momentum below 30 GeV[2]. Our study, focused on bbar-b jets, is preceded by a careful analysis of single energy particles between 2 and 50 GeV. As medium energy particles are a substantial component of the jets, many of the particles lose part of their energy in the calorimeters and the solenoid coil before reaching the muon detector where they may have energy below 2 GeV. To deal with this problem we have implemented a Runge-Kutta correction of the calculated trajectory to better handle these lower energy particles. The multiple scattering and other stochastic processes, more important at lower energy, is addressed by a Kalman-filter integrated into the reconstruction algorithm. The algorithm provides a unique and powerful separation of muons from pions. The 5 Tesla magnetic field from a solenoid surrounds the hadron calorimeter and allows the reconstruction and precision momentum measurement down to a few GeV
- …