5,859 research outputs found
Interacting Antiferromagnetic Droplets in Quantum Critical CeCoIn_5
The heavy fermion superconductor CeCoIn_5 can be tuned between
superconducting and antiferromagnetic ground states by hole doping with Cd.
Nuclear magnetic resonance (NMR) data indicate that these two orders coexist
microscopically with an ordered moment ~0.7 \mu_B. As the ground state evolves,
there is no change in the low frequency spin dynamics in the disordered state.
These results suggest that the magnetism emerges locally in the vicinity of the
Cd dopants.Comment: 4 pages, 4 figure
Low Temperature metamagnetism and Hall effect anomaly in Kondo compound CeAgBi2
Heavy fermion (HF) materials exhibit a rich array of phenomena due to the
strong Kondo coupling between their localized moments and itinerant electrons.
A central question in their study is to understand the interplay between
magnetic order and charge transport, and its role in stabilizing new quantum
phases of matter. Particularly promising in this regard is a family of
tetragonal intermetallic compounds Ce{} ( transition metal,
pnictogen), that includes a variety of HF compounds showing -linear
electronic specific heat , with 20-500
mJmol~K, reflecting an effective mass enhancement ranging
from small to modest. Here, we study the low-temperature field-tuned phase
diagram of high-quality CeAgBi using magnetometry and transport
measurements. We find an antiferromagnetic transition at ~K with
weak magnetic anisotropy and the easy axis along the -axis, similar to
previous reports (~K). This scenario, along with the presence of
two anisotropic Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions, leads to a
rich field-tuned magnetic phase diagram, consisting of five metamagnetic
transitions of both first and second order. In addition, we unveil an anomalous
Hall contribution for fields kOe which is drastically altered when
is tuned through a trio of transitions at 57, 78, and 84~kOe, suggesting that
the Fermi surface is reconstructed in a subset of the metamagnetic transitions.Comment: (*equal contribution
Crystal-field effects in the first-order valence transition in YbInCu4 induced by an external magnetic field
As it was shown earlier [Dzero, Gor'kov, and Zvezdin, J. Phys.:Condens.
Matter 12, L711 (2000)] the properties of the first-order valence phase
transition in YbInCu4 in the wide range of magnetic fields and temperatures are
perfectly described in terms of a simple entropy transition for free Yb ions.
Within this approach, the crystal field effects have been taken into account
and we show that the phase diagram in the plane acquires some anisotropy
with respect to the direction of an external magnetic field.Comment: 4 pages, 3 eps figures; minor changes; to be piblished in J. of
Physics: Cond. Ma
A precursor state to unconventional superconductivity in CeIrIn
We present sensitive measurements of the Hall effect and magnetoresistance in
CeIrIn down to temperatures of 50 mK and magnetic fields up to 15 T. The
presence of a low temperature coherent Kondo state is established. Deviations
from Kohler's rule and a quadratic temperature dependence of the cotangent of
the Hall angle are reminiscent of properties observed in the high temperature
superconducting cuprates. The most striking observation pertains to the
presence of a \textit{precursor} state--characterized by a change in the Hall
mobility--that appears to precede the superconductivity in this material, in
similarity to the pseudogap in the cuprate high superconductors.Comment: 4 figure
- …