266 research outputs found

    Appetite suppressants and valvular heart disease - a systematic review

    Get PDF
    Background Although appetite suppressants have been implicated in the development of valvular heart disease, the exact level of risk is still uncertain. Initial studies suggested that as many as 1 in 3 exposed patients were affected, but subsequent research has yielded substantially different figures. Our objective was to systematically assess the risk of valvular heart disease with appetite suppressants. Methods We accepted studies involving obese patients treated with any of the following appetite suppressants: fenfluramine, dexfenfluramine, and phentermine. Three types of studies were reviewed: controlled and uncontrolled observational studies, and randomized controlled trials. Outcomes of interest were echocardiographically detectable aortic regurgitation of mild or greater severity, or mitral regurgitation of moderate or greater severity. Results Of the 1279 patients evaluated in seven uncontrolled cohort studies, 236 (18%) and 60 (5%) were found to have aortic and mitral regurgitation, respectively. Pooled data from six controlled cohort studies yielded, for aortic regurgitation, a relative risk ratio of 2.32 (95% confidence intervals 1.79 to 3.01, p < 0.00001) and an attributable rate of 4.9%, and for mitral regurgitation, a relative risk ratio of 1.55 (95% confidence intervals 1.06 to 2.25, p = 0.02) with an attributable rate of 1.0%. Only one case of valvular heart disease was detected in 57 randomized controlled trials, but this was judged unrelated to drug therapy. Conclusions The risk of valvular heart disease is significantly increased by the appetite suppressants reviewed here. Nevertheless, when considering all the evidence, valvulopathy is much less common than suggested by the initial, less methodologically rigorous studies

    Expulsion of Symbiotic Algae during Feeding by the Green Hydra – a Mechanism for Regulating Symbiont Density?

    Get PDF
    Background: Algal-cnidarian symbiosis is one of the main factors contributing to the success of cnidarians, and is crucial for the maintenance of coral reefs. While loss of the symbionts (such as in coral bleaching) may cause the death of the cnidarian host, over-proliferation of the algae may also harm the host. Thus, there is a need for the host to regulate the population density of its symbionts. In the green hydra, Chlorohydra viridissima, the density of symbiotic algae may be controlled through host modulation of the algal cell cycle. Alternatively, Chlorohydra may actively expel their endosymbionts, although this phenomenon has only been observed under experimentally contrived stress conditions. Principal Findings: We show, using light and electron microscopy, that Chlorohydra actively expel endosymbiotic algal cells during predatory feeding on Artemia. This expulsion occurs as part of the apocrine mode of secretion from the endodermal digestive cells, but may also occur via an independent exocytotic mechanism. Significance: Our results demonstrate, for the first time, active expulsion of endosymbiotic algae from cnidarians under natural conditions. We suggest this phenomenon may represent a mechanism whereby cnidarians can expel excess symbiotic algae when an alternative form of nutrition is available in the form of prey

    Performance of in-hospital mortality prediction models for acute hospitalization: Hospital Standardized Mortality Ratio in Japan

    Get PDF
    <p>Abstract</p> <p>Objective</p> <p>In-hospital mortality is an important performance measure for quality improvement, although it requires proper risk adjustment. We set out to develop in-hospital mortality prediction models for acute hospitalization using a nation-wide electronic administrative record system in Japan.</p> <p>Methods</p> <p>Administrative records of 224,207 patients (patients discharged from 82 hospitals in Japan between July 1, 2002 and October 31, 2002) were randomly split into preliminary (179,156 records) and test (45,051 records) groups. Study variables included Major Diagnostic Category, age, gender, ambulance use, admission status, length of hospital stay, comorbidity, and in-hospital mortality. ICD-10 codes were converted to calculate comorbidity scores based on Quan's methodology. Multivariate logistic regression analysis was then performed using in-hospital mortality as a dependent variable. C-indexes were calculated across risk groups in order to evaluate model performances.</p> <p>Results</p> <p>In-hospital mortality rates were 2.68% and 2.76% for the preliminary and test datasets, respectively. C-index values were 0.869 for the model that excluded length of stay and 0.841 for the model that included length of stay.</p> <p>Conclusion</p> <p>Risk models developed in this study included a set of variables easily accessible from administrative data, and still successfully exhibited a high degree of prediction accuracy. These models can be used to estimate in-hospital mortality rates of various diagnoses and procedures.</p

    Xenobiotic metabolizing enzyme gene polymorphisms predict response to lung volume reduction surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the National Emphysema Treatment Trial (NETT), marked variability in response to lung volume reduction surgery (LVRS) was observed. We sought to identify genetic differences which may explain some of this variability.</p> <p>Methods</p> <p>In 203 subjects from the NETT Genetics Ancillary Study, four outcome measures were used to define response to LVRS at six months: modified BODE index, post-bronchodilator FEV<sub>1</sub>, maximum work achieved on a cardiopulmonary exercise test, and University of California, San Diego shortness of breath questionnaire. Sixty-four single nucleotide polymorphisms (SNPs) were genotyped in five genes previously shown to be associated with chronic obstructive pulmonary disease susceptibility, exercise capacity, or emphysema distribution.</p> <p>Results</p> <p>A SNP upstream from glutathione S-transferase pi (<it>GSTP1</it>; p = 0.003) and a coding SNP in microsomal epoxide hydrolase (<it>EPHX1</it>; p = 0.02) were each associated with change in BODE score. These effects appeared to be strongest in patients in the non-upper lobe predominant, low exercise subgroup. A promoter SNP in <it>EPHX1 </it>was associated with change in BODE score (p = 0.008), with the strongest effects in patients with upper lobe predominant emphysema and low exercise capacity. One additional SNP in <it>GSTP1 </it>and three additional SNPs in <it>EPHX1 </it>were associated (p < 0.05) with additional LVRS outcomes. None of these SNP effects were seen in 166 patients randomized to medical therapy.</p> <p>Conclusion</p> <p>Genetic variants in <it>GSTP1 </it>and <it>EPHX1</it>, two genes encoding xenobiotic metabolizing enzymes, were predictive of response to LVRS. These polymorphisms may identify patients most likely to benefit from LVRS.</p

    Stable Cytotoxic T Cell Escape Mutation in Hepatitis C Virus Is Linked to Maintenance of Viral Fitness

    Get PDF
    Mechanisms by which hepatitis C virus (HCV) evades cellular immunity to establish persistence in chronically infected individuals are not clear. Mutations in human leukocyte antigen (HLA) class I-restricted epitopes targeted by CD8+ T cells are associated with persistence, but the extent to which these mutations affect viral fitness is not fully understood. Previous work showed that the HCV quasispecies in a persistently infected chimpanzee accumulated multiple mutations in numerous class I epitopes over a period of 7 years. During the acute phase of infection, one representative epitope in the C-terminal region of the NS3/4A helicase, NS31629-1637, displayed multiple serial amino acid substitutions in major histocompatibility complex (MHC) anchor and T cell receptor (TCR) contact residues. Only one of these amino acid substitutions at position 9 (P9) of the epitope was stable in the quasispecies. We therefore assessed the effect of each mutation observed during in vivo infection on viral fitness and T cell responses using an HCV subgenomic replicon system and a recently developed in vitro infectious virus cell culture model. Mutation of a position 7 (P7) TCR-contact residue, I1635T, expectedly ablated the T cell response without affecting viral RNA replication or virion production. In contrast, two mutations at the P9 MHC-anchor residue abrogated antigen-specific T cell responses, but additionally decreased viral RNA replication and virion production. The first escape mutation, L1637P, detected in vivo only transiently at 3 mo after infection, decreased viral production, and reverted to the parental sequence in vitro. The second P9 variant, L1637S, which was stable in vivo through 7 years of follow-up, evaded the antigen-specific T cell response and did not revert in vitro despite being less optimal in virion production compared to the parental virus. These studies suggest that HCV escape mutants emerging early in infection are not necessarily stable, but are eventually replaced with variants that achieve a balance between immune evasion and fitness for replication

    Role of IL-1 Beta in the Development of Human TH17 Cells: Lesson from NLPR3 Mutated Patients

    Get PDF
    T helper 17 cells (T(H)-17) represent a lineage of effector T cells critical in host defence and autoimmunity. In both mouse and human IL-1Ξ² has been indicated as a key cytokine for the commitment to T(H)-17 cells. Cryopyrin-associated periodic syndromes (CAPS) are a group of inflammatory diseases associated with mutations of the NLRP3 gene encoding the inflammasome component cryopyrin. In this work we asked whether the deregulated secretion of IL-1Ξ² secondary to mutations characterizing these patients could affect the IL-23/IL-17 axis.A total of 11 CAPS, 26 systemic onset juvenile idiopathic arthritis (SoJIA) patients and 20 healthy controls were analyzed. Serum levels of IL-17 and IL-6 serum were assessed by ELISA assay. Frequency of T(H)17 cells was quantified upon staphylococcus enterotoxin B (SEB) stimulation. Secretion of IL-1Ξ², IL-23 and IL-6 by monocyte derived dendritic cells (MoDCs), were quantified by ELISA assay. A total of 8 CAPS and 11 SoJIA patients were also analysed before and after treatment with IL-1Ξ² blockade. Untreated CAPS patients showed significantly increased IL-17 serum levels as well as a higher frequency of T(H)17 compared to control subjects. On the contrary, SoJIA patients displayed a frequency of T(H)17 similar to normal donors, but were found to have significantly increased serum level of IL-6 when compared to CAPS patients or healthy donors. Remarkably, decreased IL-17 serum levels and T(H)17 frequency were observed in CAPS patients following in vivo IL-1Ξ² blockade. On the same line, MoDCs from CAPS patients exhibited enhanced secretion of IL-1Ξ² and IL-23 upon TLRs stimulation, with a reduction after anti-IL-1 treatment.These findings further support the central role of IL-1Ξ² in the differentiation of T(H)17 in human inflammatory conditions

    Mechanism of trifluorothymidine potentiation of oxaliplatin-induced cytotoxicity to colorectal cancer cells

    Get PDF
    Oxaliplatin (OHP) is an anticancer agent that acts by formation of Platinum-DNA (Pt-DNA) adducts resulting in DNA-strand breaks and is used for the treatment of colorectal cancer. The pyrimidine analog trifluorothymidine (TFT) forms together with a thymidine phosphorylase inhibitor (TPI) the anticancer drug formulation TAS-102, in which TPI enhances the bioavailability of TFT in vivo. In this in vitro study the combined cytotoxic effects of OHP with TFT were investigated in human colorectal cancer cells as a model for TAS-102 combinations. In a panel of five colon cancer cell lines (WiDr, H630, Colo320, SNU-C4 and SW1116) we evaluated the OHP-TFT drug combinations using the multiple drug–effect analysis with CalcuSyn software, in which the combination index (CI) indicates synergism (CI<0.9), additivity (CI=0.9–1.1) or antagonism (CI>1.1). Drug target analysis was used for WiDr, H630 and SW1116 to investigate whether there was an increase in Pt-DNA adduct formation, DNA damage induction, cell cycle delay and apoptosis. Trifluorothymidine combined with OHP resulted in synergism for all cell lines (all CI<0.9). This was irrespective of schedule in which either one of the drugs was kept at a constant concentration (using variable drug ratio) or when the two drugs were added in a 1 : 1 IC50-based molar ratio. Synergism could be increased for WiDr using sequential drug treatment schedules. Trifluorothymidine increased Pt-DNA adduct formation significantly in H630 and SW1116 (14.4 and 99.1%, respectively; P<0.05). Platinum-DNA adducts were retained best in SW1116 in the presence of TFT. More DNA-strand breaks were induced in SW1116 and the combination increased DNA damage induction (>20%) compared with OHP alone. Exposure to the drugs induced a clear cell-cycle S-phase arrest, but was dose schedule and cell line dependent. Trifluorothymidine (TFT) and OHP both induced apoptosis, which increased significantly for WiDr and SW1116 after TFT–OHP exposure (18.8 and 20.6% respectively; P<0.05). The basal protein levels of ERCC1 DNA repair enzyme were not related to the DNA damage that was induced in the cell lines. In conclusion, the combination of TFT with the DNA synthesis inhibitor OHP induces synergism in colorectal cancer cells, but is dependent on the dose and treatment schedule used

    The Polyamine Inhibitor Alpha-Difluoromethylornithine Modulates Hippocampus-Dependent Function after Single and Combined Injuries

    Get PDF
    Exposure to uncontrolled irradiation in a radiologic terrorism scenario, a natural disaster or a nuclear battlefield, will likely be concomitantly superimposed on other types of injury, such as trauma. In the central nervous system, radiation combined injury (RCI) involving irradiation and traumatic brain injury may have a multifaceted character. This may entail cellular and molecular changes that are associated with cognitive performance, including changes in neurogenesis and the expression of the plasticity-related immediate early gene Arc. Because traumatic stimuli initiate a characteristic early increase in polyamine metabolism, we hypothesized that treatment with the polyamine inhibitor alpha-difluoromethylornithine (DFMO) would reduce the adverse effects of single or combined injury on hippocampus structure and function. Hippocampal dependent cognitive impairments were quantified with the Morris water maze and showed that DFMO effectively reversed cognitive impairments after all injuries, particularly traumatic brain injury. Similar results were seen with respect to the expression of Arc protein, but not neurogenesis. Given that polyamines have been found to modulate inflammatory responses in the brain we also assessed the numbers of total and newly born activated microglia, and found reduced numbers of newly born cells. While the mechanisms responsible for the improvement in cognition after DFMO treatment are not yet clear, the present study provides new and compelling data regarding the potential use of DFMO as a potential countermeasure against the adverse effects of single or combined injury
    • …
    corecore