8,044 research outputs found
HEAO-A nominal scanning observation schedule
The HEAO-A observatory, scheduled for launch in late June 1977, will spend most of its orbital lifetime in a scanning mode, spining from 0.03 to 0.1 rpm about an axis aligned with the sun. The dates of availability in the scan band are given for a list of 248 X-ray sources. Celestial maps of source locations and scan planes, and examples of the nighttime elevation of available sources are presented. This document is intended to aid ground-based observers in planning coordinated observations with HEAO-A
Radiation environment and hazards for a geosynchronous space station
An evaluation was made of the potential radiation hazards to the crew and equipment of a geosynchronous space station. Tissue dose rates for electron, bremsstrahlung, galactic cosmic rays, and solar proton events are included for parking longitudes of 110 and 290 degrees at orbit inclinations of 0, 30, and 45 degrees
Skylab neutron environment experiment (Science Demonstration SD-34 (TV108)). Description and preliminary results
Neutron and proton induced radioactivity at various locations within Skylab were measured. Samples of five metals were formed into activation packets and deployed at the following locations on the Skylab 4 mission: orbital workshop film vault, water storage tank, and two opposing orbital workshop internal locations. Radioactive nuclides were produced in the packets by nuclear interactions of high-energy protons and secondary neutrons within Skylab. Low-level gamma ray spectroscopy measurements were made on the returned packets to determine the incident neutron and proton fluxes and spectra and their variations with mass distribution
Outline bibliography, and KWIC index on mechanical theorem proving and its applications
Bibliography and KWIC index on mechanical theorem proving and its application
Particle Acceleration and Radiation associated with Magnetic Field Generation from Relativistic Collisionless Shocks
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. The simulation results show that this
instability is responsible for generating and amplifying highly nonuniform,
small-scale magnetic fields, which contribute to the electron's transverse
deflection behind the jet head. The ``jitter'' radiation from deflected
electrons has different properties than synchrotron radiation which is
calculated in a uniform magnetic field. This jitter radiation may be important
to understanding the complex time evolution and/or spectral structure in
gamma-ray bursts, relativistic jets, and supernova remnants.Comment: 4 pages, 1 figure, submitted to Proceedings of 2003 Gamma Ray Burst
Conferenc
Capabilities of the GRO/BATSE for monitoring of discrete sources
Although the Burst and Transient Source Experiment (BATSE) to be flown on the Gamma Ray Observatory has as its primary objective the detection of gamma ray bursts, its uncollimated design will enable it to serve a unique function as an all-sky monitor for bright hard X-ray and low-energy gamma ray sources. Pulsating sources may be detected by conventional techniques such as summed-epoch and Fourier analyses. The BATSE will, in addition, be able to use Earth occultation in an unprecedented way to monitor sufficiently bright sources as often as several times per day over approx. 85% of the sky. Estimates of the expected BATSE sensitivity using both of these techniques are presented
Acceleration Mechanics in Relativistic Shocks by the Weibel Instability
Plasma instabilities (e.g., Buneman, Weibel and other two-stream
instabilities) created in collisionless shocks may be responsible for particle
(electron, positron, and ion) acceleration. Using a 3-D relativistic
electromagnetic particle (REMP) code, we have investigated long-term particle
acceleration associated with relativistic electron-ion or electron-positron jet
fronts propagating into an unmagnetized ambient electron-ion or
electron-positron plasma. These simulations have been performed with a longer
simulation system than our previous simulations in order to investigate the
nonlinear stage of the Weibel instability and its particle acceleration
mechanism. The current channels generated by the Weibel instability are
surrounded by toroidal magnetic fields and radial electric fields. This radial
electric field is quasi stationary and accelerates particles which are then
deflected by the magnetic field.Comment: 17 pages, 5 figures, accepted for publication in ApJ, A full
resolution ot the paper can be found at
http://gammaray.nsstc.nasa.gov/~nishikawa/accmec.pd
The role of quasi-momentum in the resonant dynamics of the atom-optics kicked rotor
We examine the effect of the initial atomic momentum distribution on the
dynamics of the atom-optical realisation of the quantum kicked rotor. The atoms
are kicked by a pulsed optical lattice, the periodicity of which implies that
quasi-momentum is conserved in the transport problem. We study and compare
experimentally and theoretically two resonant limits of the kicked rotor: in
the vicinity of the quantum resonances and in the semiclassical limit of
vanishing kicking period. It is found that for the same experimental
distribution of quasi-momenta, significant deviations from the kicked rotor
model are induced close to quantum resonance, while close to the classical
resonance (i.e. for small kicking period) the effect of the quasi-momentum
vanishes.Comment: 10 pages, 4 figures, to be published in J. Phys. A, Special Issue on
'Trends in Quantum Chaotic Scattering
Particle Acceleration in Relativistic Jets due to Weibel Instability
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas.
Plasma waves and their associated instabilities (e.g., the Buneman instability,
two-streaming instability, and the Weibel instability) created in the shocks
are responsible for particle (electron, positron, and ion) acceleration. Using
a 3-D relativistic electromagnetic particle (REMP) code, we have investigated
particle acceleration associated with a relativistic jet front propagating
through an ambient plasma with and without initial magnetic fields. We find
only small differences in the results between no ambient and weak ambient
magnetic fields. Simulations show that the Weibel instability created in the
collisionless shock front accelerates particles perpendicular and parallel to
the jet propagation direction. While some Fermi acceleration may occur at the
jet front, the majority of electron acceleration takes place behind the jet
front and cannot be characterized as Fermi acceleration. The simulation results
show that this instability is responsible for generating and amplifying highly
nonuniform, small-scale magnetic fields, which contribute to the electron's
transverse deflection behind the jet head. The ``jitter'' radiation (Medvedev
2000) from deflected electrons has different properties than synchrotron
radiation which is calculated in a uniform magnetic field. This jitter
radiation may be important to understanding the complex time evolution and/or
spectral structure in gamma-ray bursts, relativistic jets, and supernova
remnants.Comment: ApJ, in press, Sept. 20, 2003 (figures with better resolution:
http://gammaray.nsstc.nasa.gov/~nishikawa/apjweib.pdf
- …
