32,548 research outputs found

    Flight investigation of the VFR and IFR landing approach characteristics and terminal area airspace requirements for a light STOL airplane

    Get PDF
    A flight research program was conducted to determine the terminal area instrument flight capabilities of a light STOL airplane. Simulated (hooded) instrument landing approaches were made using steep single-segment and two-segment glide slopes. A brief investigation was also made of the visual flight terminal area capabilities of the aircraft. The results indicated that the airplane could be flown on a 7 deg glide-slope ILS-type approach in still air with an adequate 3 deg margin for downward correction

    Eu0.5_{0.5}Sr1.5_{1.5}MnO4_4: a three-dimensional XY spin glass

    Full text link
    The frequency, temperature, and dc-bias dependence of the ac-susceptibility of a high quality single crystal of the Eu0.5_{0.5}Sr1.5_{1.5}MnO4_4 layered manganite is investigated. Eu0.5_{0.5}Sr1.5_{1.5}MnO4_4 behaves like a XY spin glass with a strong basal anisotropy. Dynamical and static scalings reveal a three-dimensional phase transition near TgT_g = 18 K, and yield critical exponent values between those of Heisenberg- and Ising-like systems, albeit slightly closer to the Ising case. Interestingly, as in the latter system, the here observed rejuvenation effects are rather weak. The origin and nature of the low temperature XY spin glass state is discussed.Comment: REVTeX 4 style; 5 pages, 4 figure

    The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall

    Get PDF
    We study the reliability of the reconstruction method which uses a modelling of the redshift distortions of the two-point correlation function to estimate the pairwise peculiar velocity dispersion of galaxies. In particular, the dependence of this quantity on different models for the infall velocity is examined for the Las Campanas Redshift Survey. We make extensive use of numerical simulations and of mock catalogs derived from them to discuss the effect of a self-similar infall model, of zero infall, and of the real infall taken from the simulation. The implications for two recent discrepant determinations of the pairwise velocity dispersion for this survey are discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8 pages with 2 figures include

    Classical transverse Ising spin glass with short- range interaction beyond the mean field approximation

    Full text link
    The classical transverse field Ising spin- glass model with short-range interactions is investigated beyond the mean- field approximation for a real d- dimensional lattice. We use an appropriate nontrivial modification of the Bethe- Peierls method recently formulated for the Ising spin- glass. The zero- temperature critical value of the transverse field and the linear susceptibility in the paramagnetic phase are obtained analytically as functions of dimensionality d. The phase diagram is also calculated numerically for different values of d. In the limit d -> infinity, known mean- field results are consistently reproduced.Comment: LaTex, 11 pages, 2 figure

    Configuration-Space Location of the Entanglement between Two Subsystems

    Full text link
    In this paper we address the question: where in configuration space is the entanglement between two particles located? We present a thought-experiment, equally applicable to discrete or continuous-variable systems, in which one or both parties makes a preliminary measurement of the state with only enough resolution to determine whether or not the particle resides in a chosen region, before attempting to make use of the entanglement. We argue that this provides an operational answer to the question of how much entanglement was originally located within the chosen region. We illustrate the approach in a spin system, and also in a pair of coupled harmonic oscillators. Our approach is particularly simple to implement for pure states, since in this case the sub-ensemble in which the system is definitely located in the restricted region after the measurement is also pure, and hence its entanglement can be simply characterised by the entropy of the reduced density operators. For our spin example we present results showing how the entanglement varies as a function of the parameters of the initial state; for the continuous case, we find also how it depends on the location and size of the chosen regions. Hence we show that the distribution of entanglement is very different from the distribution of the classical correlations.Comment: RevTex, 12 pages, 9 figures (28 files). Modifications in response to journal referee

    Current--Voltage Characteristics of Two--Dimensional Vortex Glass Models

    Full text link
    We have performed Monte Carlo simulations to determine current--voltage characteristics of two different vortex glass models in two dimensions. The results confirm the conclusions of earlier studies that there is a transition at T=0T=0. In addition we find that, as T0T\to 0, the linear resistance vanishes exponentially, and the current scale, JnlJ_{nl}, where non-linearities appear in the II--VV characteristics varies roughly as T3T^3, quite different from the predictions of conventional flux creep theory, JnlTJ_{nl} \sim T. The results for the two models agree quite well with each other, and also agree fairly well with recent experiments on very thin films of YBCO.Comment: 18 pages with 10 figures available upon request from R. A. Hyman at [email protected]. The only change in the new version is the deletion of an unimportant comment.IUCM94-01

    Universality and the five-dimensional Ising model

    Full text link
    We solve the long-standing discrepancy between Monte Carlo results and the renormalization prediction for the Binder cumulant of the five-dimensional Ising model. Our conclusions are based on accurate Monte Carlo data for systems with linear sizes up to L=22. A detailed analysis of the corrections to scaling allows the extrapolation of these results to L=\infinity. Our determination of the critical point, K_c=0.1139150 (4), is more than an order of magnitude more accurate than previous estimates.Comment: 6 pages LaTeX, 1 PostScript figure. Uses cite.sty (included) and epsf.sty. Also available as PostScript and PDF file at http://www.tn.tudelft.nl/tn/erikpubs.htm
    corecore