10 research outputs found

    Chemical Biology is.....

    Get PDF
    Chemical Biology is a relatively new field, and as such is not yet simply or succinctly defined. It includes such a wide range of fundamental problems that this commentary could only include just a few snapshots of potential areas of interest. Overarching themes and selected recent successes and ideas in chemical biology are described to illustrate broadly the scope of the field, but should not be taken as exhaustive. The Chemical Biology Section of Chemistry Central Journal is pleased to receive manuscripts describing research into all and any aspects of the subject

    Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants

    Get PDF
    BACKGROUND: Owing to their roles in tissue remodelling in health and disease, several studies have reported investigations on plant extracts as inhibitors of proteinases and as anti-oxidants. METHODS: The anti-ageing and anti-oxidant properties of 23 plant extracts (from 21 plant species) were assessed as anti-elastase and anti-collagenase activities and in selected anti-oxidant assays along with phenolic content. RESULTS: Anti-elastase activities were observed for nine of the extracts with inhibitory activity in the following order: white tea (approximately 89%), cleavers (approximately 58%), burdock root (approximately 51%), bladderwrack (approximately 50%), anise and angelica (approximately 32%). Anti-collagenase activities were exhibited by sixteen plants of which the highest activity was seen in white tea (approximately 87%), green tea (approximately 47%), rose tincture (approximately 41%), and lavender (approximately 31%). Nine plant extracts had activities against both elastase (E) and collagenase (C) and were ranked in the order of white tea (E:89%, C:87%) > bladderwrack (E:50%, C:25%) > cleavers (E:58%, C:7%) > rose tincture (E:22%, C:41%) > green tea (E:10%: C:47%) > rose aqueous (E: 24%, C:26%) > angelica (E:32%, C:17%) > anise (E:32%, C:6%) > pomegranate (E:15%, C:11%).Total phenolic content varied between 0.05 and 0.26 mg gallic acid equivalents (GAE)/mL with the exception of white tea (0.77 mg GAE/mL). For anti-oxidant assessment, the Trolox equivalent anti-oxidant capacity (TEAC) assay revealed activity for all extracts. White tea had the highest activity equivalent to approximately 21 microM Trolox for a 6.25 microg aliquot. In addition, seven extracts exhibited activities = 10 microM Trolox with witch hazel (6.25 microg = 13 microM Trolox) and rose aqueous (6.25 microg = 10 microM Trolox) showing very high activities at low concentrations. A high activity for white tea was also found in the superoxide dismutase (SOD) assay in which it exhibited ~88% inhibition of reduction of nitroblue tetrazolium. High activities were also observed for green tea (86.41%), rose tincture (82.77%), witch hazel (82.05%) and rose aqueous (73.86%). CONCLUSION: From a panel of twenty three plant extracts, some one dozen exhibit high or satisfactory anti-collagenase or anti-elastase activities, with nine having inhibitory activity against both enzymes. These included white tea which was found to have very high phenolic content, along with high TEAC and SOD activities

    Performance enhancement with supplements: incongruence between rationale and practice.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Athletes are expected to consider multiple factors when making informed decision about nutritional supplement use. Besides rules, regulations and potential health hazards, the efficacy of different nutritional supplements in performance enhancement is a key issue. The aim of this paper was to find evidence for informed decision making by investigating the relationship between specific performance-related reasons for supplement use and the reported use of nutritional supplements.</p> <p>Methods</p> <p>The 'UK Sport 2005 Drug Free Survey' data (n = 874) were re-analysed using association [χ<sup>2</sup>] and 'strength of association' tests [ϕ] to show the proportion of informed choices and to unveil incongruencies between self-reported supplement use and the underlying motives.</p> <p>Results</p> <p>Participants (n = 520) reported supplement use in the pattern of: vitamin C (70.4%), creatine (36.1%), whey protein (30.6%), iron (29.8%), caffeine (23.8%), and ginseng (8.3%) for the following reasons: strength maintenance (38.1%), doctors' advice (24.2%), enhancing endurance (20.0%), ability to train longer (13.3%), and provided by the governing body (3.8%). Of thirty possible associations between the above supplements and reasons, 11 were predictable from literature precedents and only 8 were evidenced and these were not strong (ϕ < .7). The best associations were for the ability to train longer with creatine (reported by 73.9%, χ<sup>2 </sup>= 49.14, p < .001; ϕ = .307, p < .001), and maintaining strength with creatine (reported by 62.6%, χ<sup>2 </sup>= 97.08, p < .001; ϕ = .432, p < .001) and whey protein (reported by 56.1%, χ<sup>2 </sup>= 97.82, p < .001; ϕ = .434, p < .001).</p> <p>Conclusion</p> <p>This study provided a platform for assessing congruence between athletes' reasons for supplement use and their actual use. These results suggest that a lack of understanding exists in supplement use. There is an urgent need to provide accurate information which will help athletes make informed choices about the use of supplements.</p

    Redox-active labile iron in fortified flours from the Brazilian market Ferro lábil redox-ativo em farinhas fortificadas do mercado brasileiro

    No full text
    OBJECTIVE: To quantify the fraction of redox-active labile iron in iron-fortified flours acquired on the Brazilian market. METHODS: Samples of wheat flour, maize flour and breadcrumbs were extracted with buffers that mimic gastric juice, saliva and intestinal juice. Redox-active labile iron levels were assessed through the reaction of autoxidation of ascorbic acid catalyzed by iron in the presence of a fluorescence probe. RESULTS: Redox-active labile iron represents 1% to 9% of the total iron in the flour and breadcrumb samples, with the lowest values found under gastric juice conditions and the highest in the more alkaline media. Redox-active labile iron possibly arises from the decomposition of an iron-phytic acid complex. A positive correlation between redox-active labile iron and total iron was found in saline biomimetic fluids. CONCLUSION: Redox-active labile iron may be a risk factor for people with impaired antioxidant defenses, such as those who are atransferrinemic or iron overloaded (e.g. thalassemic). Total iron can be used to predict redox-active labile iron absorption at each stage of the gastrointestinal tract after ingestion of iron-fortified flours.<br>OBJETIVO: Quantificar a porcentagem de ferro lábil redox ativo em farinhas fortificadas adquiridas no comércio popular. MÉTODOS: Amostras de farinha de trigo, fubá e rosca foram extraídas com tampões miméticos de suco gástrico, saliva e suco intestinal. Os níveis de ferro lábil redox ativo foram determinados por meio da reação de auto-oxidação do ácido ascórbico catalisada pelo ferro, em presença de uma sonda fluorimétrica. RESULTADOS: A fração de ferro lábil redox ativo representa entre 1% e 9% do ferro total nas farinhas estudadas, sendo os menores valores encontrados em condições miméticas do suco gástrico e os maiores nos meios mais alcalinos. Há indícios de que o ferro lábil redox ativo origina-se da decomposição de um complexo entre ferro e ácido fítico. Observa-se uma correlação positiva entre ferro lábil redox ativo e ferro total nas condições de salinidade dos fluidos biomiméticos estudados. CONCLUSÃO: Ferro lábil redox ativo pode ser um fator de risco para pacientes atransferrinêmicos, sistemicamente sobrecarregados com ferro (por exemplo, talassêmicos) ou aqueles com defesas antioxidantes comprometidas por enfermidades. A quantidade de ferro total pode ser preditiva dos níveis de ferro lábil redox ativo absorvidos em cada etapa do trato gastrintestinal após a ingestão de farinhas fortificadas
    corecore