1,235 research outputs found
Scintillator-based diagnostic for fast ion loss measurements on DIII-D
A new scintillator-based fast ion loss detector has been installed on DIII-D with the time response
100 kHz needed to study energetic ion losses induced by Alfvén eigenmodes and other MHD
instabilities. Based on the design used on ASDEX Upgrade, the diagnostic measures the pitch angle
and gyroradius of ion losses based on the position of the ions striking the two-dimensional
scintillator. For fast time response measurements, a beam splitter and fiberoptics couple a portion of the scintillator light to a photomultiplier. Reverse orbit following techniques trace the lost ions to their possible origin within the plasma. Initial DIII-D results showing prompt losses and energetic ion loss due to MHD instabilities are discussed. © 2010 American Institute of Physics.U.S. Department of Energy DE-FC02-04ER54698, SC-G903402, DE-FG03-94ER5427
Characterization of off-axis fishbones
Repetitive bursting instabilities with strong frequency chirping occur in highbeta, beam-heated plasmas with safety factor q > 1 in the DIII-D tokamak.
Although the mode structures differ, in many ways, the off-axis fishbones
are similar to the q = 1 fishbones first observed on the Poloidal Divertor
Experiment (PDX). The modes are driven by energetic trapped ions at the fastion precession frequency. During a burst, the frequency changes most rapidly
as the mode reaches its maximum amplitude. Larger amplitude bursts have
larger growth rates and frequency chirps. Unlike PDX fishbones, the decay
phase is highly variable and is usually shorter than the growth phase. Also,
the waveform is highly distorted by higher harmonics during the latter portion
of a burst. The radial mode structure alters its shape during the burst. Like
PDX fishbones, the modes expel trapped ions in a ‘beacon’ with a definite
phase relationship relative to the mode. Seven types of loss detectors measure
the beacon. The losses scale linearly with mode amplitude. The neutron rate
changes most rapidly at maximum mode amplitude but, depending on the loss
diagnostic, the losses often peak a few cycles later. The non-ambipolar fast-ion
losses cause a sudden change in toroidal rotation frequency across the entire
plasma. In addition to an overall drop, the neutron signal oscillates in response
to the wave. Unlike the beacon of lost particles, which maintains a fixed phase
relative to the mode, the phase of the neutron oscillations steadily increases
throughout the burst, with the greatest phase slippage occurring in the highly
nonlinear phase near maximum mode amplitudeUS Department of Energy SC-G903402, DE-FC02-04ER54698, DE-FG02-07ER5491
Convective beam ion losses due to Alfven eigenmodes in DIII-D reversed-shear plasmas
Coherent losses of neutral beam ions are observed at frequencies corresponding
to toroidal and reversed-shear Alfven eigenmodes (RSAEs) in DIII-D. ´
Reversed-shear profiles are created by injecting beam power during the plasma
current ramp. Beam ion losses stemming from Alfven eigenmode activity ´
contribute to flattening of the energetic ion density profile in such discharges.
This is the first observation of convective beam ion losses due to RSAEs.
The energies and pitch angles of lost ions are measured and found to exist
within a well-defined region of phase space. Loss flux signals decrease in
time as current penetrates and Alfven eigenmode activity becomes more core ´
localized. Preliminary Monte Carlo simulations of energetic ion interactions
with measured mode structures show the dominant loss mechanism is a
transition from a counter-passing orbit to a trapped orbit that is lost to the
wall.US Department of Energy DE-AC05-06ER23100, SC-G903402, DE-FC02-04ER5469
Beam ion losses due to energetic particle geodesic acoustic modes
We report the first experimental observations of fast-ion loss in a tokamak due to energetic particle driven geodesic acoustic modes (EGAMs). A fast-ion loss detector installed on the DIII-D tokamak observes bursts of beam ion losses coherent with the EGAM frequency. The EGAM activity results in a significant loss of beam ions, comparable to the first orbit losses. The pitch angles and energies of the measured fast-ion losses agree with predictions from a full orbit simulation code SPIRAL, which includes scattering and slowing-down.U.S. Department of Energy DE-FC02-04ER 54698, SC-G903402, DE-AC02-09CH1146
Scrape-off layer ion acceleration during fast wave injection in the DIII-D tokamak
Fast wave injection is employed on the DIII-D tokamak as a current drive and electron heating method. Bursts of
energetic ions with energy Eo > 20 keV are observed immediately following fast wave injection in experiments
featuring the 8th ion cyclotron harmonic near the antenna. Using the energy and pitch angle of the energetic ion
burst as measured by a fast-ion loss detector, it is possible to trace the origin of these ions to a particular antenna. The ion trajectories exist entirely within the scrape-off layer. These observations are consistent with the presence of parametric decay instabilities near the antenna strap. It is suggested that the phase space capabilities of the loss detector diagnostic can improve studies of wave injection coupling and efficiency in tokamaks by directly measuring
the effects of parametric decay thresholds.US Department of Energy SC-G903402, DE-FG03-97ER4415, DE-FG02-89ER53296, DE-FG02-08ER549
Crystallization of a classical two-dimensional electron system: Positional and orientational orders
Crystallization of a classical two-dimensional one-component plasma
(electrons interacting with the Coulomb repulsion in a uniform neutralizing
positive background) is investigated with a molecular dynamics simulation. The
positional and the orientational correlation functions are calculated for the
first time. We have found an indication that the solid phase has a
quasi-long-range (power-law) positional order along with a long-range
orientational order. This indicates that, although the long-range Coulomb
interaction is outside the scope of Mermin's theorem, the absence of ordinary
crystalline order at finite temperatures applies to the electron system as
well. The `hexatic' phase, which is predicted between the liquid and the solid
phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also
discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne
On the relation of Thomas rotation and angular velocity of reference frames
In the extensive literature dealing with the relativistic phenomenon of
Thomas rotation several methods have been developed for calculating the Thomas
rotation angle of a gyroscope along a circular world line. One of the most
appealing concepts, introduced in \cite{rindler}, is to consider a rotating
reference frame co-moving with the gyroscope, and relate the precession of the
gyroscope to the angular velocity of the reference frame. A recent paper
\cite{herrera}, however, applies this principle to three different co-moving
rotating reference frames and arrives at three different Thomas rotation
angles. The reason for this apparent paradox is that the principle of
\cite{rindler} is used for a situation to which it does not apply. In this
paper we rigorously examine the theoretical background and limitations of
applicability of the principle of \cite{rindler}. Along the way we also
establish some general properties of {\it rotating reference frames}, which may
be of independent interest.Comment: 14 pages, 2 figure
Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks
The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations
(MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR
tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses.
Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while
intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally
applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is
observed in low-collisionality, low
q
95
plasmas with resonant and non-resonant MPs. In low-collisionality H-mode
plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band
frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal
without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing
modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The
fast-ion response to externally applied MPs presented here may be of general interest for the community to better
understand the MP field penetration and overall plasma response.Ministerio de Economía y Empresa ((RYC-2011-09152 y ENE2012-31087)Marie Curie (Grant PCIG11-GA-2012-321455)US Department of Energy (DE-FC02-04ER54698, SC-G903402, DE-FG02-04ER54761, DE-AC02-09CH11466 and DE-FG02- 08ER54984)NRF Korea contract 2009-0082012MEST under the KSTAR projec
Preface: sustainable operations in manufacturing enterprise
It is indeed a real pleasure to announce the publication of this special issue, Sustainable Operations in Manufacturing Enterprise (SOME), for Annals of Operations Research. Overall, many papers were received for this special issue, and based on reviewer reports the best papers are included in this issue. This special issue is focused primarily on the three sustainable aspects, 3Ps of sustainability: profit, planet, and people. The accepted papers focus on sustainability, circular economy, mutli-criteria decision making (MCDM), optimization modelling using mixed integer linear/non-linear program (MLP/MINLP), and data envelopment analysis (DEA) having some applications to industry and society were considered
Existential Communication and Leadership
The aim of this article is to introduce and explain a number of important existentialist philosophers and concepts that we believe can contribute to a critical approach to leadership theory. Emphasis is placed on understanding the nature of communication from an existentialist perspective and so Jaspers' conceptualization of existential communication is introduced along with important related concepts that may be regarded as important facets of leader communication including Being-in-the-world, the Other, intersubjectivity, dialogue and indirect communication. Particular attention is paid to Buber's ideas on communication as relationship and dialogue. Throughout, reference is made to contemporary, and what is often regarded as orthodox, thinking regarding the centrality of communication to leadership practice as a means by which to highlight the salience of an existentialist analysis
- …