6,595 research outputs found

    25th-order high-temperature expansion results for three-dimensional Ising-like systems on the simple cubic lattice

    Full text link
    25th-order high-temperature series are computed for a general nearest-neighbor three-dimensional Ising model with arbitrary potential on the simple cubic lattice. In particular, we consider three improved potentials characterized by suppressed leading scaling corrections. Critical exponents are extracted from high-temperature series specialized to improved potentials, obtaining γ=1.2373(2)\gamma=1.2373(2), ν=0.63012(16)\nu=0.63012(16), α=0.1096(5)\alpha=0.1096(5), η=0.03639(15)\eta=0.03639(15), β=0.32653(10)\beta=0.32653(10), δ=4.7893(8)\delta=4.7893(8). Moreover, biased analyses of the 25th-order series of the standard Ising model provide the estimate Δ=0.52(3)\Delta=0.52(3) for the exponent associated with the leading scaling corrections. By the same technique, we study the small-magnetization expansion of the Helmholtz free energy. The results are then applied to the construction of parametric representations of the critical equation of state, using a systematic approach based on a global stationarity condition. Accurate estimates of several universal amplitude ratios are also presented.Comment: 40 pages, 15 figure

    On the Green function of linear evolution equations for a region with a boundary

    Full text link
    We derive a closed-form expression for the Green function of linear evolution equations with the Dirichlet boundary condition for an arbitrary region, based on the singular perturbation approach to boundary problems.Comment: 9 page

    Videoconference-based creativity workshops for mental health staff during the COVID-19 pandemic

    Get PDF
    Background COVID-19 presented significant challenges to psychiatric staff, while social distancing and remote working necessitated digital communications. NHS England prioritised staff wellbeing. Arts-based creativity interventions appear to improve psychological wellbeing, so this study evaluated online Creativity Workshops as a staff support response for COVID-19-related stress. Methods Participants were staff from a South London NHS psychiatric hospital. Group Creativity Workshops were facilitated via Microsoft Teams. Acceptability data on pre- and post-workshop mood and attitudes were self-reported by participants. Feasibility data were gathered from adherence to number of workshop components delivered. Results Eight workshops were delivered in May-September 2020 (N = 55) with high adherence to components. Participants reported significantly increased positive mood and attitudes towards themselves and others; and decreased stress and anxiety. Conclusions Online Creativity Workshops appear feasible and acceptable in reducing stress in psychiatric staff. Integrating a programme of Creativity Workshops within healthcare staff support may benefit staff wellbeing

    Analytic Inversion of Emission Lines of Arbitrary Optical Depth for the Structure of Supernova Ejecta

    Get PDF
    We derive a method for inverting emission line profiles formed in supernova ejecta. The derivation assumes spherical symmetry and homologous expansion (i.e., v(r)rv(r) \propto r), is analytic, and even takes account of occultation by a pseudo-photosphere. Previous inversion methods have been developed which are restricted to optically thin lines, but the particular case of homologous expansion permits an analytic result for lines of {\it arbitrary} optical depth. In fact, we show that the quantity that is generically retrieved is the run of line intensity IλI_\lambda with radius in the ejecta. This result is quite general, and so could be applied to resonance lines, recombination lines, etc. As a specific example, we show how to derive the run of (Sobolev) optical depth τλ\tau_\lambda with radius in the case of a pure resonance scattering emission line.Comment: 6 pages, no figures, to appear in Astrophysical Journal Letters, requires aaspp4.sty to late

    Rapid Suppression of the Spin Gap in Zn-doped CuGeO_3 and SrCu_2O_3

    Full text link
    The influence of non-magnetic impurities on the spectrum and dynamical spin structure factor of a model for CuGeO3_3 is studied. A simple extension to Zn-doped SrCu2O3{\rm Sr Cu_2 O_3} is also discussed. Using Exact Diagonalization techniques and intuitive arguments we show that Zn-doping introduces states in the Spin-Peierls gap of CuGeO3_3. This effect can beunderstood easily in the large dimerization limit where doping by Zn creates ``loose'' S=1/2 spins, which interact with each other through very weak effective antiferromagnetic couplings. When the dimerization is small, a similar effect is observed but now with the free S=1/2 spins being the resulting S=1/2 ground state of severed chains with an odd number of sites. Experimental consequences of these results are discussed. It is interesting to observe that the spin correlations along the chains are enhanced by Zn-doping according to the numerical data presented here. As recent numerical calculations have shown, similar arguments apply to ladders with non-magnetic impurities simply replacing the tendency to dimerization in CuGeO3_3 by the tendency to form spin-singlets along the rungs in SrCu2_2O3_3.Comment: 7 pages, 8 postscript figures, revtex, addition of figure 8 and a section with experimental predictions, submmited to Phys. Rev. B in May 199

    Extension to order β23\beta^{23} of the high-temperature expansions for the spin-1/2 Ising model on the simple-cubic and the body-centered-cubic lattices

    Get PDF
    Using a renormalized linked-cluster-expansion method, we have extended to order β23\beta^{23} the high-temperature series for the susceptibility χ\chi and the second-moment correlation length ξ\xi of the spin-1/2 Ising models on the sc and the bcc lattices. A study of these expansions yields updated direct estimates of universal parameters, such as exponents and amplitude ratios, which characterize the critical behavior of χ\chi and ξ\xi. Our best estimates for the inverse critical temperatures are βcsc=0.221654(1)\beta^{sc}_c=0.221654(1) and βcbcc=0.1573725(6)\beta^{bcc}_c=0.1573725(6). For the susceptibility exponent we get γ=1.2375(6)\gamma=1.2375(6) and for the correlation length exponent we get ν=0.6302(4)\nu=0.6302(4). The ratio of the critical amplitudes of χ\chi above and below the critical temperature is estimated to be C+/C=4.762(8)C_+/C_-=4.762(8). The analogous ratio for ξ\xi is estimated to be f+/f=1.963(8)f_+/f_-=1.963(8). For the correction-to-scaling amplitude ratio we obtain aξ+/aχ+=0.87(6)a^+_{\xi}/a^+_{\chi}=0.87(6).Comment: Misprints corrected, 8 pages, latex, no figure

    Improved high-temperature expansion and critical equation of state of three-dimensional Ising-like systems

    Full text link
    High-temperature series are computed for a generalized 3d3d Ising model with arbitrary potential. Two specific ``improved'' potentials (suppressing leading scaling corrections) are selected by Monte Carlo computation. Critical exponents are extracted from high-temperature series specialized to improved potentials, achieving high accuracy; our best estimates are: γ=1.2371(4)\gamma=1.2371(4), ν=0.63002(23)\nu=0.63002(23), α=0.1099(7)\alpha=0.1099(7), η=0.0364(4)\eta=0.0364(4), β=0.32648(18)\beta=0.32648(18). By the same technique, the coefficients of the small-field expansion for the effective potential (Helmholtz free energy) are computed. These results are applied to the construction of parametric representations of the critical equation of state. A systematic approximation scheme, based on a global stationarity condition, is introduced (the lowest-order approximation reproduces the linear parametric model). This scheme is used for an accurate determination of universal ratios of amplitudes. A comparison with other theoretical and experimental determinations of universal quantities is presented.Comment: 65 pages, 1 figure, revtex. New Monte Carlo data by Hasenbusch enabled us to improve the determination of the critical exponents and of the equation of state. The discussion of several topics was improved and the bibliography was update

    Critical behavior of the three-dimensional XY universality class

    Full text link
    We improve the theoretical estimates of the critical exponents for the three-dimensional XY universality class. We find alpha=-0.0146(8), gamma=1.3177(5), nu=0.67155(27), eta=0.0380(4), beta=0.3485(2), and delta=4.780(2). We observe a discrepancy with the most recent experimental estimate of alpha; this discrepancy calls for further theoretical and experimental investigations. Our results are obtained by combining Monte Carlo simulations based on finite-size scaling methods, and high-temperature expansions. Two improved models (with suppressed leading scaling corrections) are selected by Monte Carlo computation. The critical exponents are computed from high-temperature expansions specialized to these improved models. By the same technique we determine the coefficients of the small-magnetization expansion of the equation of state. This expansion is extended analytically by means of approximate parametric representations, obtaining the equation of state in the whole critical region. We also determine the specific-heat amplitude ratio.Comment: 61 pages, 3 figures, RevTe

    Renormalized couplings and scaling correction amplitudes in the N-vector spin models on the sc and the bcc lattices

    Get PDF
    For the classical N-vector model, with arbitrary N, we have computed through order \beta^{17} the high temperature expansions of the second field derivative of the susceptibility \chi_4(N,\beta) on the simple cubic and on the body centered cubic lattices. (The N-vector model is also known as the O(N) symmetric classical spin Heisenberg model or, in quantum field theory, as the lattice O(N) nonlinear sigma model.) By analyzing the expansion of \chi_4(N,\beta) on the two lattices, and by carefully allowing for the corrections to scaling, we obtain updated estimates of the critical parameters and more accurate tests of the hyperscaling relation d\nu(N) +\gamma(N) -2\Delta_4(N)=0 for a range of values of the spin dimensionality N, including N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model], N=2 [the XY model], N=3 [the classical Heisenberg model]. Using the recently extended series for the susceptibility and for the second correlation moment, we also compute the dimensionless renormalized four point coupling constants and some universal ratios of scaling correction amplitudes in fair agreement with recent renormalization group estimates.Comment: 23 pages, latex, no figure

    Persistence of a Continuous Stochastic Process with Discrete-Time Sampling: Non-Markov Processes

    Full text link
    We consider the problem of `discrete-time persistence', which deals with the zero-crossings of a continuous stochastic process, X(T), measured at discrete times, T = n(\Delta T). For a Gaussian Stationary Process the persistence (no crossing) probability decays as exp(-\theta_D T) = [\rho(a)]^n for large n, where a = \exp[-(\Delta T)/2], and the discrete persistence exponent, \theta_D, is given by \theta_D = \ln(\rho)/2\ln(a). Using the `Independent Interval Approximation', we show how \theta_D varies with (\Delta T) for small (\Delta T) and conclude that experimental measurements of persistence for smooth processes, such as diffusion, are less sensitive to the effects of discrete sampling than measurements of a randomly accelerated particle or random walker. We extend the matrix method developed by us previously [Phys. Rev. E 64, 015151(R) (2001)] to determine \rho(a) for a two-dimensional random walk and the one-dimensional random acceleration problem. We also consider `alternating persistence', which corresponds to a < 0, and calculate \rho(a) for this case.Comment: 14 pages plus 8 figure
    corecore