For the classical N-vector model, with arbitrary N, we have computed through
order \beta^{17} the high temperature expansions of the second field derivative
of the susceptibility \chi_4(N,\beta) on the simple cubic and on the body
centered cubic lattices. (The N-vector model is also known as the O(N)
symmetric classical spin Heisenberg model or, in quantum field theory, as the
lattice
O(N) nonlinear sigma model.) By analyzing the expansion of \chi_4(N,\beta) on
the two lattices, and by carefully allowing for the corrections to scaling, we
obtain updated estimates of the critical parameters and more accurate tests of
the hyperscaling relation d\nu(N) +\gamma(N) -2\Delta_4(N)=0 for a range of
values of the spin dimensionality N, including
N=0 [the self-avoiding walk model], N=1 [the Ising spin 1/2 model],
N=2 [the XY model], N=3 [the classical Heisenberg model]. Using the recently
extended series for the susceptibility and for the second correlation moment,
we also compute the dimensionless renormalized four point coupling constants
and some universal ratios of scaling correction amplitudes in fair agreement
with recent renormalization group estimates.Comment: 23 pages, latex, no figure