601 research outputs found

    Generalized phonon-assisted Zener tunneling in indirect semiconductors with non-uniform electric fields : a rigorous approach

    Full text link
    A general framework to calculate the Zener current in an indirect semiconductor with an externally applied potential is provided. Assuming a parabolic valence and conduction band dispersion, the semiconductor is in equilibrium in the presence of the external field as long as the electronphonon interaction is absent. The linear response to the electron-phonon interaction results in a non-equilibrium system. The Zener tunneling current is calculated from the number of electrons making the transition from valence to conduction band per unit time. A convenient expression based on the single particle spectral functions is provided, enabling the numerical calculation of the Zener current under any three-dimensional potential profile. For a one dimensional potential profile an analytical expression is obtained for the current in a bulk semiconductor, a semiconductor under uniform field and a semiconductor under a non-uniform field using the WKB (Wentzel-Kramers-Brillouin) approximation. The obtained results agree with the Kane result in the low field limit. A numerical example for abrupt p - n diodes with different doping concentrations is given, from which it can be seen that the uniform field model is a better approximation than the WKB model but a direct numerical treatment is required for low bias conditions.Comment: 29 pages, 7 figure

    Calculation of the electron mobility in III-V inversion layers with high-kappa dielectrics

    Get PDF
    We calculate the electron mobility for a metal-oxide-semiconductor system with a metallic gate, high-kappa dielectric layer, and III-V substrate, including scattering with longitudinal-optical (LO) polar-phonons of the III-V substrate and with the interfacial excitations resulting from the coupling of insulator and substrate optical modes among themselves and with substrate plasmons. In treating scattering with the substrate LO-modes, multisubband dynamic screening is included and compared to the dielectric screening in the static limit and with the commonly used screening model obtained by defining an effective screening wave vector. The electron mobility components limited by substrate LO phonons and interfacial modes are calculated for In0.53Ga0.47As and GaAs substrates with SiO2 and HfO2 gate dielectrics. The mobility components limited by the LO-modes and interfacial phonons are also investigated as a function of temperature. Scattering with surface roughness, fixed interface charge, and nonpolar-phonons is also included to judge the relative impact of each scattering mechanism in the total mobility for In0.53Ga0.47As with HfO2 gate dielectric. We show that InGaAs is affected by interfacial-phonon scattering to an extent larger than Si, lowering the expected performance, but probably not enough to question the technological relevance of InGaAs. (C) 2010 American Institute of Physics. [doi:10.1063/1.3500553

    Novel Algorithms Reveal Streptococcal Transcriptomes and Clues about Undefined Genes

    Get PDF
    Bacteria–host interactions are dynamic processes, and understanding transcriptional responses that directly or indirectly regulate the expression of genes involved in initial infection stages would illuminate the molecular events that result in host colonization. We used oligonucleotide microarrays to monitor (in vitro) differential gene expression in group A streptococci during pharyngeal cell adherence, the first overt infection stage. We present neighbor clustering, a new computational method for further analyzing bacterial microarray data that combines two informative characteristics of bacterial genes that share common function or regulation: (1) similar gene expression profiles (i.e., co-expression); and (2) physical proximity of genes on the chromosome. This method identifies statistically significant clusters of co-expressed gene neighbors that potentially share common function or regulation by coupling statistically analyzed gene expression profiles with the chromosomal position of genes. We applied this method to our own data and to those of others, and we show that it identified a greater number of differentially expressed genes, facilitating the reconstruction of more multimeric proteins and complete metabolic pathways than would have been possible without its application. We assessed the biological significance of two identified genes by assaying deletion mutants for adherence in vitro and show that neighbor clustering indeed provides biologically relevant data. Neighbor clustering provides a more comprehensive view of the molecular responses of streptococci during pharyngeal cell adherence

    The graceful exit from the anomaly-induced inflation: Supersymmetry as a key

    Get PDF
    The stable version of the anomaly-induced inflation does not need a fine tuning and leads to sufficient expansion of the Universe. The non-stable version (Starobinsky model) provides the graceful exit to the FRW phase. We indicate the possibility of the inflation which is stable at the beginning and unstable at the end. The effect is due to the soft supersymmetry breaking and the decoupling of the massive sparticles at low energy.Comment: 10 pages, 2 figures using axodraw. Modified version. Discussion concerning the gravitational scale modified, the effect of massive particles in the last stage of inflation taken into accoun

    Spin diffusion/transport in nn-type GaAs quantum wells

    Full text link
    The spin diffusion/transport in nn-type (001) GaAs quantum well at high temperatures (≄120\ge120 K) is studied by setting up and numerically solving the kinetic spin Bloch equations together with the Poisson equation self-consistently. All the scattering, especially the electron-electron Coulomb scattering, is explicitly included and solved in the theory. This enables us to study the system far away from the equilibrium, such as the hot-electron effect induced by the external electric field parallel to the quantum well. We find that the spin polarization/coherence oscillates along the transport direction even when there is no external magnetic field. We show that when the scattering is strong enough, electron spins with different momentums oscillate in the same phase which leads to equal transversal spin injection length and ensemble transversal injection length. It is also shown that the intrinsic scattering is already strong enough for such a phenomena. The oscillation period is almost independent on the external electric field which is in agreement with the latest experiment in bulk system at very low temperature [Europhys. Lett. {\bf 75}, 597 (2006)]. The spin relaxation/dephasing along the diffusion/transport can be well understood by the inhomogeneous broadening, which is caused by the momentum-dependent diffusion and the spin-orbit coupling, and the scattering. The scattering, temperature, quantum well width and external magnetic/electric field dependence of the spin diffusion is studied in detail.Comment: 12 pages, 6 figures, to be published in J Appl. Phy

    Decoherence of electron spin qubits in Si-based quantum computers

    Full text link
    Direct phonon spin-lattice relaxation of an electron qubit bound by a donor impurity or quantum dot in SiGe heterostructures is investigated. The aim is to evaluate the importance of decoherence from this mechanism in several important solid-state quantum computer designs operating at low temperatures. We calculate the relaxation rate 1/T11/T_1 as a function of [100] uniaxial strain, temperature, magnetic field, and silicon/germanium content for Si:P bound electrons. The quantum dot potential is much smoother, leading to smaller splittings of the valley degeneracies. We have estimated these splittings in order to obtain upper bounds for the relaxation rate. In general, we find that the relaxation rate is strongly decreased by uniaxial compressive strain in a SiGe-Si-SiGe quantum well, making this strain an important positive design feature. Ge in high concentrations (particularly over 85%) increases the rate, making Si-rich materials preferable. We conclude that SiGe bound electron qubits must meet certain conditions to minimize decoherence but that spin-phonon relaxation does not rule out the solid-state implementation of error-tolerant quantum computing.Comment: 8 figures. To appear in PRB-July 2002. Revisions include: some references added/corrected, several typos fixed, a few things clarified. Nothing dramati

    Dynamical Solutions to the Horizon and Flatness Problems

    Get PDF
    We discuss in some detail the requirements on an early-Universe model that solves the horizon and flatness problems during the epoch of classical cosmology (t≄ti≫10−43sec⁥t\ge t_i\gg 10^{-43}\sec). We show that a dynamical resolution of the horizon problem requires superluminal expansion (or very close to it) and that a truly satisfactory resolution of the flatness problem requires entropy production. This implies that a proposed class of adiabatic models in which the Planck mass varies by many orders of magnitude cannot fully resolve the flatness problem. Furthermore, we show that, subject to minimal assumptions, such models cannot solve the horizon problem either. Because superluminal expansion and entropy production are the two generic features of inflationary models, our results suggest that inflation, or something very similar, may be the only dynamical solution to the horizon and flatness problems.Comment: 17 page
    • 

    corecore