2,560 research outputs found

    Macro and Micro Wear Traces on Lithic Projectile Points

    Get PDF
    Macro and Micro Wear Traces on Lithic Projectile Point

    Primary Productivity was Limited by Electron Donors Prior to the Advent of Oxygenic Photosynthesis

    Get PDF
    To evaluate productivity on the early Earth before the advent of oxygenic photosynthesis, we integrated estimates of net primary production by early anaerobic metabolisms as limited by geological fluxes of key electron donor compounds, phosphate, and fixed nitrogen. These calculations show that productivity was limited by fluxes of electron donor compounds to rates that were orders of magnitude lower than today. Results suggest that ferrous iron provided a minor fuel for net primary productivity compared to molecular hydrogen. Fluxes of fixed nitrogen and phosphate were in excess of demands by the electron donor‐limited biosphere, even without biological nitrogen fixation. This suggests that until life learned to use water as an electron donor for photosynthesis, the size and productivity of the biosphere were constrained by the geological supply of electron donors and there may not have been much ecological pressure to evolve biological nitrogen fixation. Moreover, extremely low productivity in the absence of oxygenic photosynthesis has implications for the potential scale of biospheres on icy worlds such as Enceladus and Europa, where photosynthesis is not possible and life would be unable to escape electron donor limitation

    Greenalite Nanoparticles in Alkaline Vent Plumes as Templates for the Origin of Life

    Get PDF
    Mineral templates are thought to have played keys roles in the emergence of life. Drawing on recent findings from 3.45–2.45 billion-year-old iron-rich hydrothermal sedimentary rocks, we hypothesize that greenalite (Fe₃Si₂O₅ (OH)₄) was a readily available mineral in hydrothermal environments, where it may have acted as a template and catalyst in polymerization, vesicle formation and encapsulation, and protocell replication. We argue that venting of dissolved Fe²⁺ and SiO₂ (aq) into the anoxic Hadean ocean favored the precipitation of nanometer-sized particles of greenalite in hydrothermal plumes, producing a continuous flow of free-floating clay templates that traversed the ocean. The mixing of acidic, metal-bearing hydrothermal plumes from volcanic ridge systems with more alkaline, organic-bearing plumes generated by serpentinization of ultramafic rocks brought together essential building blocks for life in solutions conducive to greenalite precipitation. We suggest that the extreme disorder in the greenalite crystal lattice, producing structural modulations resembling parallel corrugations (∼22 Å wide) on particle edges, promoted the assembly and alignment of linear RNA-type molecules (∼20 Å diameter). In alkaline solutions, greenalite nanoparticles could have accelerated the growth of membrane vesicles, while their encapsulation allowed RNA-type molecules to continue to form on the mineral templates, potentially enhancing the growth and division of primitive cell membranes. Once self-replicating RNA evolved, the mineral template became redundant, and protocells were free to replicate and roam the ocean realm

    Greenalite Nanoparticles in Alkaline Vent Plumes as Templates for the Origin of Life

    Get PDF
    Mineral templates are thought to have played keys roles in the emergence of life. Drawing on recent findings from 3.45–2.45 billion-year-old iron-rich hydrothermal sedimentary rocks, we hypothesize that greenalite (Fe₃Si₂O₅ (OH)₄) was a readily available mineral in hydrothermal environments, where it may have acted as a template and catalyst in polymerization, vesicle formation and encapsulation, and protocell replication. We argue that venting of dissolved Fe²⁺ and SiO₂ (aq) into the anoxic Hadean ocean favored the precipitation of nanometer-sized particles of greenalite in hydrothermal plumes, producing a continuous flow of free-floating clay templates that traversed the ocean. The mixing of acidic, metal-bearing hydrothermal plumes from volcanic ridge systems with more alkaline, organic-bearing plumes generated by serpentinization of ultramafic rocks brought together essential building blocks for life in solutions conducive to greenalite precipitation. We suggest that the extreme disorder in the greenalite crystal lattice, producing structural modulations resembling parallel corrugations (∼22 Å wide) on particle edges, promoted the assembly and alignment of linear RNA-type molecules (∼20 Å diameter). In alkaline solutions, greenalite nanoparticles could have accelerated the growth of membrane vesicles, while their encapsulation allowed RNA-type molecules to continue to form on the mineral templates, potentially enhancing the growth and division of primitive cell membranes. Once self-replicating RNA evolved, the mineral template became redundant, and protocells were free to replicate and roam the ocean realm

    Advanced 3-D Ultrasound Imaging.:3-D Synthetic Aperture Imaging and Row-column Addressing of 2-D Transducer Arrays

    Get PDF
    corecore