127 research outputs found

    Functional assays for the assessment of the pathogenicity of variants of GOSR2, an ER-to-Golgi SNARE involved in progressive myoclonus epilepsies.

    Get PDF
    Progressive myoclonus epilepsies (PMEs) are inherited disorders characterized by myoclonus, generalized tonic-clonic seizures, and ataxia. One of the genes that is associated with PME is the ER-to-Golgi Qb-SNARE GOSR2, which forms a SNARE complex with syntaxin-5, Bet1 and Sec22b. Most PME patients are homo-zygous for a p.Gly144Trp mutation and develop similar clinical presentations. Recently, a patient who was compound heterozygous for p.Gly144Trp and a previously unseen p.Lys164del mutation was identified. Because this patient presented with a milder disease phenotype, we hypothesized that the p.Lys164del mutation may be less severe compared to p.Gly144Trp. To characterize the effect of the p.Gly144Trp and p.Lys164del mutations, both of which are present in the SNARE motif of GOSR2, we examined the corresponding mutations in the yeast ortholog Bos1. Yeasts expressing the orthologous mutants in Bos1 showed impaired growth, suggesting a partial loss of function, which was more severe for the Bos1 p.Gly176Trp mutation. Using anisotropy and gel filtration, we report that Bos1 p.Gly176Trp and p.Arg196del are capable of complex formation, but with partly reduced activity. Molecular dynamics (MD) simulations showed that the hydrophobic core, which triggers SNARE complex formation, is compromised due to the glycine-to-tryptophan substitution in both GOSR2 and Bos1. In contrast, the deletion of residue p.Lys164 (or p.Arg196del in Bos1) interferes with the formation of hydrogen bonds between GOSR2 and syntaxin-5. Despite these perturbations, all SNARE complexes stayed intact during longer simulations. Thus, our data suggest that the milder course of disease in compound heterozygous PME is due to less severe impairment of the SNARE function

    A Novel Function of Noc2 in Agonist-Induced Intracellular Ca2+ Increase during Zymogen-Granule Exocytosis in Pancreatic Acinar Cells

    Get PDF
    Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca2+-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 µM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca2+]i-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca2+]i increases

    Discovery and progress in our understanding of the regulated secretory pathway in neuroendocrine cells

    Get PDF
    In this review we start with a historical perspective beginning with the early morphological work done almost 50 years ago. The importance of these pioneering studies is underscored by our brief summary of the key questions addressed by subsequent research into the mechanism of secretion. We then highlight important advances in our understanding of the formation and maturation of neuroendocrine secretory granules, first using in vitro reconstitution systems, then most recently biochemical approaches, and finally genetic manipulations in vitro and in vivo

    Distinct yet overlapping roles of Rab GTPases on synaptic vesicles

    No full text
    Exo-endocytotic cycling of synaptic vesicles (SVs) is one of the most intensely studied membrane trafficking pathways. It is governed by sets of conserved proteins including Rab GTPases. Long considered to define the identity and composition of a subcellular organelle, it has become increasingly evident that multiple Rabs co-exist on intracellular compartments, each contributing to its membrane organization and specialised function. Indeed, we have recently demonstrated that at least 11 distinct Rab proteins co-exist on highly purified SVs. These include Rabs involved in exocytosis (Rab3a/b/c and Rab27b) and intermediates of SV recycling such as early endosomes (Rab4, Rab5, Rab10, Rab11b and Rab14). Interestingly, we found that while two of these proteins, namely Rab3a and Rab27b, exhibited differential cycling dynamics on SV membranes; they played complementary roles during Ca2+-triggered neurotransmitter release. The implications of these findings in the SV trafficking cycle are discussed

    rab3 is a small GTP-binding protein exclusively localized to synaptic vesicles.

    No full text
    rab3, a low molecular weight GTP-binding protein, is primarily expressed in brain, where it is present in soluble and membrane-bound forms. Membrane-bound rab3 in brain is exclusively localized on synaptic vesicles, the secretory organelles of the synapse that store and release neurotransmitters. rab3 is also expressed in endocrine tissues such as the adrenal medulla, where it is found together with other synaptic vesicle proteins on microvesicles distinct from chromaffin granules. The tight binding of rab3 to membranes correlates with hydrophobic modifications that are different in the membrane-bound and soluble forms of rab3. The results demonstrate the exclusive targeting of a small GTP-binding protein to secretory vesicles of a subset of the regulated pathway of secretion
    corecore