712 research outputs found

    Study of hyperfine structure in simple atoms and precision tests of the bound state QED

    Get PDF
    We consider the most accurate tests of bound state QED, precision theory of simple atoms, related to the hyperfine splitting in light hydrogen-like atoms. We discuss the HFS interval of the 1s state in muonium and positronium and of the 2s state in hydrogen, deuterium and helium-3 ion. We summarize their QED theory and pay attention to involved effects of strong interactions. We also consider recent optical measurements of the 2s HFS interval in hydrogen and deuterium.Comment: presented at The International Workshop "e+e- collisions from phi to psi

    Generalized harmonic formulation in spherical symmetry

    Get PDF
    In this pedagogically structured article, we describe a generalized harmonic formulation of the Einstein equations in spherical symmetry which is regular at the origin. The generalized harmonic approach has attracted significant attention in numerical relativity over the past few years, especially as applied to the problem of binary inspiral and merger. A key issue when using the technique is the choice of the gauge source functions, and recent work has provided several prescriptions for gauge drivers designed to evolve these functions in a controlled way. We numerically investigate the parameter spaces of some of these drivers in the context of fully non-linear collapse of a real, massless scalar field, and determine nearly optimal parameter settings for specific situations. Surprisingly, we find that many of the drivers that perform well in 3+1 calculations that use Cartesian coordinates, are considerably less effective in spherical symmetry, where some of them are, in fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added references; journal version

    Facility for studying the effects of elevated carbon dioxide concentration and increased temperature on crops

    Get PDF
    The requirements for the experimental study of the effects of global climate change conditions on plants are outlined. A semi-controlled plant growth facility is described which allows the study of elevated CO2 and temperature, and their interaction on the growth of plants under radiation and temperature conditions similar to the field. During an experiment on winter wheat (cv. Mercia), which ran from December 1990 through to August 1991, the facility maintained mean daytime CO2 concentrations of 363 and 692 cm3 m-3 for targets of 350 and 700 cm3 m-3 respectively. Temperatures were set to follow outside ambient or outside ambient +4-degrees-C, and hourly means were within 0.5-degrees-C of the target for 92% of the time for target temperatures greater than 6-degrees-C. Total photosynthetically active radiation incident on the crop (solar radiation supplemented by artifical light with natural photoperiod) was 2% greater than the total measured outside over the same period

    Cold atoms in a high-Q ring-cavity

    Get PDF
    We report the confinement of large clouds of ultra-cold 85-Rb atoms in a standing-wave dipole trap formed by the two counter-propagating modes of a high-Q ring-cavity. Studying the properties of this trap we demonstrate loading of higher-order transverse cavity modes and excite recoil-induced resonances.Comment: 4 pages, 4 figure

    Light-Front Approach for Pentaquark Strong Decays

    Full text link
    Assuming the two diquark structure for the pentaquark state as advocated in the Jaffe-Wilczek model, we study the strong decays of light and heavy parity-even pentaquark states using the light-front quark model in conjunction with the spectator approximation. The narrowness of the Theta width is ascribed to the p-wave configuration of the diquark pair. Taking the Theta width as a benchmark, we estimate the rates of the strong decays Xi_{3/2}-- to Xi- pi-, Sigma- K-, Sigma_{5c}0 to D_s- p, D_{s0}*- p and Xi_{5c}0 to D_s- Sigma+, D_{s0}^{*-} Sigma+ with Sigma_{5c} Xi_{5c} being antisextet charmed pentaquarks and D_{s0}* a scalar strange charmed meson. The ratio of Gamma(P_c to Baryon D_{s0}*)/Gamma(P_c to Baryon D_s) is very useful for verifying the parity of the antisextet charmed pentaquark P_c. It is expected to be of order unity for an even parity P_c and much less than one for an odd parity pentaquark.Comment: 24 pages, 2 figure

    Trapping and cooling single atoms with far-off resonance intracavity doughnut modes

    Get PDF
    We investigate cooling and trapping of single atoms inside an optical cavity using a quasi-resonant field and a far-off resonant mode of the Laguerre-Gauss type. The far-off resonant doughnut mode provides an efficient trapping in the case when it shifts the atomic internal ground and excited state in the same way, which is particularly useful for quantum information applications of cavity quantum electrodynamics (QED) systems. Long trapping times can be achieved, as shown by full 3-D simulations of the quasi-classical motion inside the resonator.Comment: 18 pages, 18 figures, RevTe

    Optical frequency measurement of the 1S-3S two-photon transition in hydrogen

    Full text link
    This article reports the first optical frequency measurement of the 1S3S1\mathrm{S}-3\mathrm{S} transition in hydrogen. The excitation of this transition occurs at a wavelength of 205 nm which is obtained with two frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency is measured with an optical frequency comb. The second-order Doppler effect is evaluated from the observation of the motional Stark effect due to a transverse magnetic field perpendicular to the atomic beam. The measured value of the 1S1/2(F=1)3S1/2(F=1)1\mathrm{S}_{1/2}(F=1)-3\mathrm{S}_{1/2}(F=1) frequency splitting is 2922742936.729(13)MHz2 922 742 936.729 (13) \mathrm{MHz} with a relative uncertainty of 4.5×10124.5\times10^{-12}. After the measurement of the 1S2S1\mathrm{S}-2\mathrm{S} frequency, this result is the most precise of the optical frequencies in hydrogen

    A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions

    Full text link
    We present a solid-state laser system that generates 750 mW of continuous-wave single-frequency output at 313 nm. Sum-frequency generation with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This visible light is then converted to UV by cavity-enhanced second-harmonic generation. The laser output can be tuned over a 495 GHz range, which includes the 9Be+ laser cooling and repumping transitions. This is the first report of a narrow-linewidth laser system with sufficient power to perform fault-tolerant quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman transitions.Comment: 9 pages, 4 figure

    Vortices and dynamics in trapped Bose-Einstein condensates

    Full text link
    I review the basic physics of ultracold dilute trapped atomic gases, with emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation) illuminates the role of the density and the quantum-mechanical phase. One unique feature of these experimental systems is the opportunity to study the dynamics of vortices in real time, in contrast to typical experiments on superfluid 4^4He. I discuss three specific examples (precession of single vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex array). Other unusual features include the study of quantum turbulence and the behavior for rapid rotation, when the vortices form dense regular arrays. Ultimately, the system is predicted to make a quantum phase transition to various highly correlated many-body states (analogous to bosonic quantum Hall states) that are not superfluid and do not have condensate wave functions. At present, this transition remains elusive. Conceivably, laser-induced synthetic vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics, conference proceedings: Symposia on Superfluids under Rotation (Lammi, Finland, April 2010

    Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction

    Get PDF
    It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction
    corecore