710 research outputs found
Study of hyperfine structure in simple atoms and precision tests of the bound state QED
We consider the most accurate tests of bound state QED, precision theory of
simple atoms, related to the hyperfine splitting in light hydrogen-like atoms.
We discuss the HFS interval of the 1s state in muonium and positronium and of
the 2s state in hydrogen, deuterium and helium-3 ion. We summarize their QED
theory and pay attention to involved effects of strong interactions. We also
consider recent optical measurements of the 2s HFS interval in hydrogen and
deuterium.Comment: presented at The International Workshop "e+e- collisions from phi to
psi
Generalized harmonic formulation in spherical symmetry
In this pedagogically structured article, we describe a generalized harmonic
formulation of the Einstein equations in spherical symmetry which is regular at
the origin. The generalized harmonic approach has attracted significant
attention in numerical relativity over the past few years, especially as
applied to the problem of binary inspiral and merger. A key issue when using
the technique is the choice of the gauge source functions, and recent work has
provided several prescriptions for gauge drivers designed to evolve these
functions in a controlled way. We numerically investigate the parameter spaces
of some of these drivers in the context of fully non-linear collapse of a real,
massless scalar field, and determine nearly optimal parameter settings for
specific situations. Surprisingly, we find that many of the drivers that
perform well in 3+1 calculations that use Cartesian coordinates, are
considerably less effective in spherical symmetry, where some of them are, in
fact, unstable.Comment: 47 pages, 15 figures. v2: Minor corrections, including 2 added
references; journal version
Facility for studying the effects of elevated carbon dioxide concentration and increased temperature on crops
The requirements for the experimental study of the effects of global climate change conditions on plants are outlined. A semi-controlled plant growth facility is described which allows the study of elevated CO2 and temperature, and their interaction on the growth of plants under radiation and temperature conditions similar to the field. During an experiment on winter wheat (cv. Mercia), which ran from December 1990 through to August 1991, the facility maintained mean daytime CO2 concentrations of 363 and 692 cm3 m-3 for targets of 350 and 700 cm3 m-3 respectively. Temperatures were set to follow outside ambient or outside ambient +4-degrees-C, and hourly means were within 0.5-degrees-C of the target for 92% of the time for target temperatures greater than 6-degrees-C. Total photosynthetically active radiation incident on the crop (solar radiation supplemented by artifical light with natural photoperiod) was 2% greater than the total measured outside over the same period
Cold atoms in a high-Q ring-cavity
We report the confinement of large clouds of ultra-cold 85-Rb atoms in a
standing-wave dipole trap formed by the two counter-propagating modes of a
high-Q ring-cavity. Studying the properties of this trap we demonstrate loading
of higher-order transverse cavity modes and excite recoil-induced resonances.Comment: 4 pages, 4 figure
Light-Front Approach for Pentaquark Strong Decays
Assuming the two diquark structure for the pentaquark state as advocated in
the Jaffe-Wilczek model, we study the strong decays of light and heavy
parity-even pentaquark states using the light-front quark model in conjunction
with the spectator approximation. The narrowness of the Theta width is ascribed
to the p-wave configuration of the diquark pair. Taking the Theta width as a
benchmark, we estimate the rates of the strong decays Xi_{3/2}-- to Xi- pi-,
Sigma- K-, Sigma_{5c}0 to D_s- p, D_{s0}*- p and Xi_{5c}0 to D_s- Sigma+,
D_{s0}^{*-} Sigma+ with Sigma_{5c} Xi_{5c} being antisextet charmed pentaquarks
and D_{s0}* a scalar strange charmed meson. The ratio of Gamma(P_c to Baryon
D_{s0}*)/Gamma(P_c to Baryon D_s) is very useful for verifying the parity of
the antisextet charmed pentaquark P_c. It is expected to be of order unity for
an even parity P_c and much less than one for an odd parity pentaquark.Comment: 24 pages, 2 figure
Trapping and cooling single atoms with far-off resonance intracavity doughnut modes
We investigate cooling and trapping of single atoms inside an optical cavity
using a quasi-resonant field and a far-off resonant mode of the Laguerre-Gauss
type. The far-off resonant doughnut mode provides an efficient trapping in the
case when it shifts the atomic internal ground and excited state in the same
way, which is particularly useful for quantum information applications of
cavity quantum electrodynamics (QED) systems. Long trapping times can be
achieved, as shown by full 3-D simulations of the quasi-classical motion inside
the resonator.Comment: 18 pages, 18 figures, RevTe
Optical frequency measurement of the 1S-3S two-photon transition in hydrogen
This article reports the first optical frequency measurement of the
transition in hydrogen. The excitation of this
transition occurs at a wavelength of 205 nm which is obtained with two
frequency doubling stages of a titanium sapphire laser at 820 nm. Its frequency
is measured with an optical frequency comb. The second-order Doppler effect is
evaluated from the observation of the motional Stark effect due to a transverse
magnetic field perpendicular to the atomic beam. The measured value of the
frequency splitting is with a relative uncertainty of
. After the measurement of the
frequency, this result is the most precise of the optical frequencies in
hydrogen
A 750 mW, continuous-wave, solid-state laser source at 313 nm for cooling and manipulating trapped 9Be+ ions
We present a solid-state laser system that generates 750 mW of
continuous-wave single-frequency output at 313 nm. Sum-frequency generation
with fiber lasers at 1550 nm and 1051 nm produces up to 2 W at 626 nm. This
visible light is then converted to UV by cavity-enhanced second-harmonic
generation. The laser output can be tuned over a 495 GHz range, which includes
the 9Be+ laser cooling and repumping transitions. This is the first report of a
narrow-linewidth laser system with sufficient power to perform fault-tolerant
quantum-gate operations with trapped 9Be+ ions by use of stimulated Raman
transitions.Comment: 9 pages, 4 figure
Vortices and dynamics in trapped Bose-Einstein condensates
I review the basic physics of ultracold dilute trapped atomic gases, with
emphasis on Bose-Einstein condensation and quantized vortices. The hydrodynamic
form of the Gross-Pitaevskii equation (a nonlinear Schr{\"o}dinger equation)
illuminates the role of the density and the quantum-mechanical phase. One
unique feature of these experimental systems is the opportunity to study the
dynamics of vortices in real time, in contrast to typical experiments on
superfluid He. I discuss three specific examples (precession of single
vortices, motion of vortex dipoles, and Tkachenko oscillations of a vortex
array). Other unusual features include the study of quantum turbulence and the
behavior for rapid rotation, when the vortices form dense regular arrays.
Ultimately, the system is predicted to make a quantum phase transition to
various highly correlated many-body states (analogous to bosonic quantum Hall
states) that are not superfluid and do not have condensate wave functions. At
present, this transition remains elusive. Conceivably, laser-induced synthetic
vector potentials can serve to reach this intriguing phase transition.Comment: Accepted for publication in Journal of Low Temperature Physics,
conference proceedings: Symposia on Superfluids under Rotation (Lammi,
Finland, April 2010
Regulation of phosphorylase kinase by low concentrations of Ca ions upon muscle contraction: the connection between metabolism and muscle contraction and the connection between muscle physiology and Ca-dependent signal transduction
It had long been one of the crucial questions in muscle physiology how glycogenolysis is regulated in connection with muscle contraction, when we found the answer to this question in the last half of the 1960s. By that time, the two principal currents of muscle physiology, namely, the metabolic flow starting from glycogen and the mechanisms of muscle contraction, had already been clarified at the molecular level thanks to our senior researchers. Thus, the final question we had to answer was how to connect these two currents. We found that low concentrations of Ca ions (10−7–10−4 M) released from the sarcoplasmic reticulum for the regulation of muscle contraction simultaneously reversibly activate phosphorylase kinase, the enzyme regulating glycogenolysis. Moreover, we found that adenosine 3′,5′-monophosphate (cyclic AMP), which is already known to activate muscle phosphorylase kinase, is not effective in the absence of such concentrations of Ca ions. Thus, cyclic AMP is not effective by itself alone and only modifies the activation process in the presence of Ca ions (at that time, cyclic AMP-dependent protein kinase had not yet been identified). After a while, it turned out that our works have not only provided the solution to the above problem on muscle physiology, but have also been considered as the first report of Ca-dependent protein phosphorylation, which is one of the central problems in current cell biology. Phosphorylase kinase is the first protein kinase to phosphorylate a protein resulting in the change in the function of the phosphorylated protein, as shown by Krebs and Fischer. Our works further showed that this protein kinase is regulated in a Ca-dependent manner. Accordingly, our works introduced the concept of low concentrations of Ca ions, which were first identified as the regulatory substance of muscle contraction, to the vast field of Ca biology including signal transduction
- …