45,194 research outputs found
Effects of ursodeoxycholic acid on synthesis of cholesterol and bile acids in healthy subjects
Background/Aims: Ursodeoxycholic acid ( UDCA) decreases biliary secretion of cholesterol and is therefore used for the dissolution of cholesterol gallstones. It remains unclear whether these changes in biliary cholesterol excretion are associated with changes in cholesterol synthesis and bile acid synthesis. We therefore studied the activities of rate-limiting enzymes of cholesterol synthesis and bile acid synthesis, 3-hydroxy-3-methyl-glutarylcoenzyme A reductase and cholesterol 7alpha-hydroxylase, respectively, in normal subjects during UDCA feeding. Methods: UDCA was given to 8 healthy volunteers ( 5 men, 3 women; age 24-44 years) in a single dose of 10-15 mg/kg body weight for 40 days. Before and during ( days 3, 5, 10, 20, 30 and 40) UDCA treatment, urinary excretion of mevalonic acid and serum concentrations of 7alpha-hydroxy-4-cholesten-3-one (7alpha-HCO) were determined as markers of cholesterol and bile acid synthesis, respectively. The Wilcoxon signed rank test and Spearman's rank correlation coefficient were used for statistical analysis. Results: Cholesterol synthesis and serum lipid concentrations remained unchanged during UDCA treatment for 40 days. However, synthesis of bile acids increased during long-term treatment with UDCA as reflected by an increase in 7alpha-HCO serum concentrations from 39.7 +/- 21.3 ng/ml (median 32.8 ng/ml) before treatment to 64.0 +/- 30.4 ng/ml (median 77.5 ng/ml) at days 30-40 of UDCA treatment ( p < 0.05). Conclusions: UDCA treatment does not affect cholesterol synthesis in the liver, but does increase bile acid synthesis after prolonged treatment. This may represent a compensatory change following decreased absorption of endogenous bile acids as observed with UDCA therapy
Dicke quantum spin glass of atoms and photons
Recent studies of strongly interacting atoms and photons in optical cavities
have rekindled interest in the Dicke model of atomic qubits coupled to discrete
photon cavity modes. We study the multimode Dicke model with variable
atom-photon couplings. We argue that a quantum spin glass phase can appear,
with a random linear combination of the cavity modes superradiant. We compute
atomic and photon spectral response functions across this quantum phase
transition, both of which should be accessible in experiment.Comment: 4 pages, 3 figures, v2: described quantum optics set-up in more
detail; extended discussion on photon correlation functions and experimental
signatures; added reference
Equilibrium Configurations of Homogeneous Fluids in General Relativity
By means of a highly accurate, multi-domain, pseudo-spectral method, we
investigate the solution space of uniformly rotating, homogeneous and
axisymmetric relativistic fluid bodies. It turns out that this space can be
divided up into classes of solutions. In this paper, we present two new classes
including relativistic core-ring and two-ring solutions. Combining our
knowledge of the first four classes with post-Newtonian results and the
Newtonian portion of the first ten classes, we present the qualitative
behaviour of the entire relativistic solution space. The Newtonian disc limit
can only be reached by going through infinitely many of the aforementioned
classes. Only once this limiting process has been consummated, can one proceed
again into the relativistic regime and arrive at the analytically known
relativistic disc of dust.Comment: 8 pages, colour figures, v3: minor additions including one reference,
accepted by MNRA
Gyroscopes based on nitrogen-vacancy centers in diamond
We propose solid-state gyroscopes based on ensembles of negatively charged
nitrogen-vacancy () centers in diamond. In one scheme, rotation of
the nitrogen-vacancy symmetry axis will induce Berry phase shifts in the electronic ground-state coherences proportional to the solid angle
subtended by the symmetry axis. We estimate sensitivity in the range of
in a 1 sensor volume using
a simple Ramsey sequence. Incorporating dynamical decoupling to suppress
dipolar relaxation may yield sensitivity at the level of . With a modified Ramsey scheme, Berry phase shifts in the
hyperfine sublevels would be employed. The projected sensitivity
is in the range of , however the smaller
gyromagnetic ratio reduces sensitivity to magnetic-field noise by several
orders of magnitude. Reaching would represent
an order of magnitude improvement over other compact, solid-state gyroscope
technologies.Comment: 3 figures, 5 page
A new chiral electro-optic effect: Sum-frequency generation from optically active liquids in the presence of a dc electric field
We report the observation of sum-frequency signals that depend linearly on an
applied electrostatic field and that change sign with the handedness of an
optically active solution. This recently predicted chiral electro-optic effect
exists in the electric-dipole approximation. The static electric field gives
rise to an electric-field-induced sum-frequency signal (an achiral third-order
process) that interferes with the chirality-specific sum-frequency at
second-order. The cross-terms linear in the electrostatic field constitute the
effect and may be used to determine the absolute sign of second- and
third-order nonlinear optical susceptibilities in isotropic media.Comment: Submitted to Physical Revie
Dynamic photoconductive gain effect in shallow-etched AlGaAs/GaAs quantum wires
We report on a dynamic photoconductive gain effect in quantum wires which are
lithographically fabricated in an AlGaAs/GaAs quantum well via a shallow-etch
technique. The effect allows resolving the one-dimensional subbands of the
quantum wires as maxima in the photoresponse across the quantum wires. We
interpret the results by optically induced holes in the valence band of the
quantum well which shift the chemical potential of the quantum wire. The
non-linear current-voltage characteristics of the quantum wires also allow
detecting the photoresponse effect of excess charge carriers in the conduction
band of the quantum well. The dynamics of the photoconductive gain are limited
by the recombination time of both electrons and holes
Correlated motion of two atoms trapped in a single mode cavity field
We study the motion of two atoms trapped at distant positions in the field of
a driven standing wave high-Q optical resonator. Even without any direct
atom-atom interaction the atoms are coupled through their position dependent
influence on the intracavity field. For sufficiently good trapping and low
cavity losses the atomic motion becomes significantly correlated and the two
particles oscillate in their wells preferentially with a 90 degrees relative
phase shift. The onset of correlations seriously limits cavity cooling
efficiency, raising the achievable temperature to the Doppler limit. The
physical origin of the correlation can be traced back to a cavity mediated
cross-friction, i.e. a friction force on one particle depending on the velocity
of the second particle. Choosing appropriate operating conditions allows for
engineering these long range correlations. In addition this cross-friction
effect can provide a basis for sympathetic cooling of distant trapped clouds.Comment: 10 pages, 9 figures, accepted for publication in Phys. Rev. A. Minor
grammatical changes to previous versio
The re-emission spectrum of digital hardware subjected to EMI
The emission spectrum of digital hardware under the influence of external electromagnetic interference is shown to contain information about the interaction of the incident energy with the digital circuits in the system. The generation mechanism of the re-emission spectrum is reviewed, describing how nonlinear effects may be a precursor to the failure of the equipment under test. Measurements on a simple circuit are used to demonstrate how the characteristics of the re-emission spectrum may be correlated with changes to the digital waveform within the circuit. The technique is also applied to a piece of complex digital hardware where Similar, though more subtle, effects can be measured. It is shown that the re-emission spectrum can be used to detect the interaction of the interference with the digital devices at a level well below that which is able to cause static failures in the circuits. The utility of the technique as a diagnostic tool for immunity testing of digital hardware, by identifying which subsystems are being affected by external interference, is also demonstrated
Hypergraph Acyclicity and Propositional Model Counting
We show that the propositional model counting problem #SAT for CNF- formulas
with hypergraphs that allow a disjoint branches decomposition can be solved in
polynomial time. We show that this class of hypergraphs is incomparable to
hypergraphs of bounded incidence cliquewidth which were the biggest class of
hypergraphs for which #SAT was known to be solvable in polynomial time so far.
Furthermore, we present a polynomial time algorithm that computes a disjoint
branches decomposition of a given hypergraph if it exists and rejects
otherwise. Finally, we show that some slight extensions of the class of
hypergraphs with disjoint branches decompositions lead to intractable #SAT,
leaving open how to generalize the counting result of this paper
Combining laser frequency combs and iodine cell calibration techniques for Doppler detection of exoplanets
Exoplanets can be detected from a time series of stellar spectra by looking for small, periodic shifts in the absorption features that are consistent with Doppler shifts caused by the presence of an exoplanet, or multiple exoplanets, in the system. While hundreds of large exoplanets have already been discovered with the Doppler technique (also called radial velocity), our goal is to improve the measurement precision so that many Earth-like planets can be detected. The smaller mass and longer period of true Earth analogues require the ability to detect a reflex velocity of ~10 cm/s over long time periods. Currently, typical astronomical spectrographs calibrate using either Iodine absorptive cells or Thorium Argon lamps and achieve ~10 m/s precision, with the most stable spectrographs pushing down to ~2 m/s. High velocity precision is currently achieved at HARPS by controlling the thermal and pressure environment of the spectrograph. These environmental controls increase the cost of the spectrograph, and it is not feasible to simply retrofit existing spectrometers. We propose a fiber-fed high precision spectrograph design that combines the existing ~5000-6000 A Iodine calibration system with a high-precision Laser Frequency Comb (LFC) system from ~6000-7000 A that just meets the redward side of the Iodine lines. The scientific motivation for such a system includes: a 1000 A span in the red is currently achievable with LFC systems, combining the two calibration methods increases the wavelength range by a factor of two, and moving redward decreases the 'noise' from starspots. The proposed LFC system design employs a fiber laser, tunable serial Fabry-Perot cavity filters to match the resolution of the LFC system to that of standard astronomical spectrographs, and terminal ultrasonic vibration of the multimode fiber for a stable point spread function
- …