2,216 research outputs found
Bridging the empathy gap: or not? Reactions to ingroup and outgroup facial expressions
Prior research suggests that group membership impacts behavioral and self-reported responses to others’ facial expressions of emotion. In this paper, we examine how the mere labelling of a face as an ingroup or outgroup member affects facial mimicry (Study 1) and judgments of genuineness (Study 2). In addition, we test whether the effects of group membership on facial mimicry and perceived genuineness are moderated by the presence of tears (Study 1) and the motivation to cooperate (Study 2). Results from both studies revealed group-specific biases in facial mimicry and judgments of genuineness. However, introducing cooperative goals abolished differences in judgments of genuineness of facial expressions displayed by ingroup and outgroup members. Together, the findings provide insights into how intergroup biases in emotion perception operate and how they can be reduced by introducing cooperative goals
Three-dimensional femtosecond laser nanolithography of crystals
Nanostructuring hard optical crystals has so far been exclusively feasible at
their surface, as stress induced crack formation and propagation has rendered
high precision volume processes ineffective. We show that the inner chemical
etching reactivity of a crystal can be enhanced at the nanoscale by more than
five orders of magnitude by means of direct laser writing. The process allows
to produce cm-scale arbitrary three-dimensional nanostructures with 100 nm
feature sizes inside large crystals in absence of brittle fracture. To showcase
the unique potential of the technique, we fabricate photonic structures such as
sub-wavelength diffraction gratings and nanostructured optical waveguides
capable of sustaining sub-wavelength propagating modes inside yttrium aluminum
garnet crystals. This technique could enable the transfer of concepts from
nanophotonics to the fields of solid state lasers and crystal optics.Comment: Submitted Manuscript and Supplementary Informatio
Quantum dots in axillary lymph node mapping: Biodistribution study in healthy mice
<p>Abstract</p> <p>Background</p> <p>Breast cancer is the first cause of cancer death among women and its incidence doubled in the last two decades. Several approaches for the treatment of these cancers have been developed. The axillary lymph node dissection (ALND) leads to numerous morbidity complications and is now advantageously replaced by the dissection and the biopsy of the sentinel lymph node. Although this approach has strong advantages, it has its own limitations which are manipulation of radioactive products and possible anaphylactic reactions to the dye. As recently proposed, these limitations could in principle be by-passed if semiconductor nanoparticles (quantum dots or QDs) were used as fluorescent contrast agents for the <it>in vivo </it>imaging of SLN. QDs are fluorescent nanoparticles with unique optical properties like strong resistance to photobleaching, size dependent emission wavelength, large molar extinction coefficient, and good quantum yield.</p> <p>Methods</p> <p>CdSe/ZnS core/shell QDs emitting around 655 nm were used in our studies. 20 μL of 1 μM (20 pmol) QDs solution were injected subcutaneously in the anterior paw of healthy nude mice and the axillary lymph node (ALN) was identified visually after injection of a blue dye. <it>In vivo </it>fluorescence spectroscopy was performed on ALN before the mice were sacrificed at 5, 15, 30, 60 min and 24 h after QDs injection. ALN and all other organs were removed, cryosectioned and observed in fluorescence microscopy. The organs were then chemically made soluble to extract QDs. Plasmatic, urinary and fecal fluorescence levels were measured.</p> <p>Results</p> <p>QDs were detected in ALN as soon as 5 min and up to 24 h after the injection. The maximum amount of QDs in the ALN was detected 60 min after the injection and corresponds to 2.42% of the injected dose. Most of the injected QDs remained at the injection site. No QDs were detected in other tissues, plasma, urine and feces.</p> <p>Conclusion</p> <p>Effective and rapid (few minutes) detection of sentinel lymph node using fluorescent imaging of quantum dots was demonstrated. This work was done using very low doses of injected QDs and the detection was done using a minimally invasive method.</p
Real-time high-resolution heterodyne-based measurements of spectral dynamics in fibre lasers
Conventional tools for measurement of laser spectra (e.g. optical spectrum analysers) capture data averaged over a considerable time period. However, the generation spectrum of many laser types may involve spectral dynamics whose relatively fast time scale is determined by their cavity round trip period, calling for instrumentation featuring both high temporal and spectral resolution. Such real-time spectral characterisation becomes particularly challenging if the laser pulses are long, or they have continuous or quasi-continuous wave radiation components. Here we combine optical heterodyning with a technique of spatiooral intensity measurements that allows the characterisation of such complex sources. Fast, round-trip-resolved spectral dynamics of cavity-based systems in real-time are obtained, with temporal resolution of one cavity round trip and frequency resolution defined by its inverse (85 ns and 24 MHz respectively are demonstrated). We also show how under certain conditions for quasi-continuous wave sources, the spectral resolution could be further increased by a factor of 100 by direct extraction of phase information from the heterodyned dynamics or by using double time scales within the spectrogram approach
Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli
In clostridia, n-butanol production from carbohydrates at yields of up to 76% of the theoretical maximum and at titers of up to 13 g/L has been reported. However, in Escherichia coli, several groups have reported butyric acid or butanol production from recombinant expression of clostridial genes, at much lower titers and yields. To pinpoint deficient steps in the recombinant pathway, we developed an analytical procedure for the determination of intracellular pools of key pathway intermediates and applied the technique to the analysis of three sets of E. coli strains expressing various combinations of butyrate biosynthesis genes. Low expression levels of the hbd-encoded S-3-hydroxybutyryl-CoA dehydrogenase were insufficient to convert acetyl-CoA to 3-hydroxybutyryl-CoA, indicating that hbd was a rate-limiting step in the production of butyryl-CoA. Increasing hbd expression alleviated this bottleneck, but in resulting strains, our pool size measurements and thermodynamic analysis showed that the reaction step catalyzed by the bcd-encoded butyryl-CoA dehydrogenase was rate-limiting. E. coli strains expressing both hbd and ptb-buk produced crotonic acid as a byproduct, but this byproduct was not observed with expression of related genes from non-clostridial organisms. Our thermodynamic interpretation of pool size measurements is applicable to the analysis of other metabolic pathways
A clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and outcome after cardiac arrest
<p>Abstract</p> <p>Background</p> <p>Anoxic coma following cardiac arrest is a common problem with ethical, social, and legal consequences. Except for unfavorable somatosensory-evoked potentials (SSEP) results, predictors of unfavorable outcome with a 100% specificity and a high sensitivity are lacking. The aim of the current research was to construct a clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and 6-months outcome in comatose patients after cardiac arrest.</p> <p>Methods</p> <p>We retrospectively reviewed the records of all consecutive patients who suffered cardiac arrest outside our hospital and were subsequently admitted to our facility from November 2002 to July 2006. We scored each case based on early clinical and EEG factors associated with unfavorable SSEPs, and we assessed the ability of this score to predict SSEP results and outcome.</p> <p>Results</p> <p>Sixty-six patients qualified for inclusion in the cohort. Among them, 34 (52%) had unfavorable SSEP results. At day three, factors independently associated with unfavorable SSEPs were: absence of corneal (14 points) and pupillary (21 points) reflexes, myoclonus (25 points), extensor or absent motor response to painful stimulation (28 points), and malignant EEG (11 points). A score >40 points had a sensitivity of 85%, a specificity of 84%, and a positive predictive value (PPV) of 85% to predict unfavorable SSEP results. A score >88 points had a PPV of 100%, but a sensitivity of 18%. Overall, this score had an area under ROC curves of 0.919. In addition, at day three, a score > 69 points had a PPV of 100% with a sensitivity of 32% to predict death or vegetative state.</p> <p>Conclusion</p> <p>A scoring system based on a combination of clinical and EEG findings can predict the absence of early cortical response to SSEPs. In settings without access to SSEPs, this score may help decision-making in a subset of comatose survivors after a cardiac arrest.</p
- …