1,523 research outputs found

    Distribution and Numbers of the Kaminuriak Caribou Herd in March and April, 1977

    Get PDF
    The distribution and abundance of the Kaminuriak caribou herd were documented through an aerial survey conducted in March and April 1977. It appears that the herd altered its traditional migration patterns and abandoned its southern wintering grounds in this year at least. The size of the herd was estimated at 30,770 animals - a significant decrease from the 63,000 animals found in 1968. Available data, although limited, suggests that the maximum allowable harvest of 5% of the herd has been exceeded in recent years. Although the possibility exists that some Kaminuriak caribou may have dispersed northward, it is considered most likely that the decline in the size of the herd is the result of overharvesting

    Molecular dynamics in arbitrary geometries : parallel evaluation of pair forces

    Get PDF
    A new algorithm for calculating intermolecular pair forces in molecular dynamics (MD) simulations on a distributed parallel computer is presented. The arbitrary interacting cells algorithm (AICA) is designed to operate on geometrical domains defined by an unstructured, arbitrary polyhedral mesh that has been spatially decomposed into irregular portions for parallelisation. It is intended for nano scale fluid mechanics simulation by MD in complex geometries, and to provide the MD component of a hybrid MD/continuum simulation. The spatial relationship of the cells of the mesh is calculated at the start of the simulation and only the molecules contained in cells that have part of their surface closer than the cut-off radius of the intermolecular pair potential are required to interact. AICA has been implemented in the open source C++ code OpenFOAM, and its accuracy has been indirectly verified against a published MD code. The same system simulated in serial and in parallel on 12 and 32 processors gives the same results. Performance tests show that there is an optimal number of cells in a mesh for maximum speed of calculating intermolecular forces, and that having a large number of empty cells in the mesh does not add a significant computational overhead

    Transport of energetic ions due to sawteeth, Alfven eigenmodes and microturbulence

    Get PDF
    Utilizing an array of new diagnostics and simulation/modelling techniques, recent DIII-D experiments have elucidated a variety of energetic ion transport behaviour in the presence of instabilities ranging from large-scale sawteeth to fine spatial scale microturbulence. Important new insights include sawteeth, such as those of the ITER baseline scenario, causing major redistribution of the energetic ion population; high levels of transport induced by low-amplitude Alfven eigenmodes can be caused by the integrated effect of a large number of simultaneous modes; ÂŽ and microturbulence can contribute to the removal of alpha ash while having little effect on fusion alphas. This paper provides an overview of recent and upcoming results from the DIII-D Energetic Particles research programme.US Department of Energy SC-G903402, DE-FC02-04ER54698, DE-FG02-89ER53296, DE-FG02-08ER54999, DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG03-08ER54984, DE-FG02-07ER5491

    Cardinal characteristics at in a small u (Îș) model

    Get PDF
    We provide a model where u(Îș)<2Îșu(Îș)<2Îș for a supercompact cardinal Îș. [10] provides a sketch of how to obtain such a model by modifying the construction in [6]. We provide here a complete proof using a different modification of [6] and further study the values of other natural generalizations of classical cardinal characteristics in our model. For this purpose we generalize some standard facts that hold in the countable case as well as some classical forcing notions and their properties

    Exceptionally Slow Rise in Differential Reflectivity Spectra of Excitons in GaN: Effect of Excitation-induced Dephasing

    Full text link
    Femtosecond pump-probe (PP) differential reflectivity spectroscopy (DRS) and four-wave mixing (FWM) experiments were performed simultaneously to study the initial temporal dynamics of the exciton line-shapes in GaN epilayers. Beats between the A-B excitons were found \textit{only for positive time delay} in both PP and FWM experiments. The rise time at negative time delay for the differential reflection spectra was much slower than the FWM signal or PP differential transmission spectroscopy (DTS) at the exciton resonance. A numerical solution of a six band semiconductor Bloch equation model including nonlinearities at the Hartree-Fock level shows that this slow rise in the DRS results from excitation induced dephasing (EID), that is, the strong density dependence of the dephasing time which changes with the laser excitation energy.Comment: 8 figure

    Non-perturbative Propagators, Running Coupling and Dynamical Quark Mass of Landau gauge QCD

    Get PDF
    The coupled system of renormalized Dyson-Schwinger equations for the quark, gluon and ghost propagators of Landau gauge QCD is solved within truncation schemes. These employ bare as well as non-perturbative ansaetze for the vertices such that the running coupling as well as the quark mass function are independent of the renormalization point. The one-loop anomalous dimensions of all propagators are reproduced. Dynamical chiral symmetry breaking is found, the dynamically generated quark mass agrees well with phenomenological values and corresponding results from lattice calculations. The effects of unquenching the system are small. In particular the infrared behavior of the ghost and gluon dressing functions found in previous studies is almost unchanged as long as the number of light flavors is smaller than four.Comment: 34 pages, 10 figures, version to be published by Phys. Rev.

    Slavnov-Taylor identities in Coulomb gauge Yang-Mills theory

    Full text link
    The Slavnov-Taylor identities of Coulomb gauge Yang-Mills theory are derived from the (standard, second order) functional formalism. It is shown how these identities form closed sets from which one can in principle fully determine the Green's functions involving the temporal component of the gauge field without approximation, given appropriate input.Comment: 20 pages, no figure

    Instability of vortex array and transitions to turbulent states in rotating helium II

    Full text link
    We consider superfluid helium inside a container which rotates at constant angular velocity and investigate numerically the stability of the array of quantized vortices in the presence of an imposed axial counterflow. This problem was studied experimentally by Swanson {\it et al.}, who reported evidence of instabilities at increasing axial flow but were not able to explain their nature. We find that Kelvin waves on individual vortices become unstable and grow in amplitude, until the amplitude of the waves becomes large enough that vortex reconnections take place and the vortex array is destabilized. The eventual nonlinear saturation of the instability consists of a turbulent tangle of quantized vortices which is strongly polarized. The computed results compare well with the experiments. Finally we suggest a theoretical explanation for the second instability which was observed at higher values of the axial flow

    Interleukin-6 and Associated Cytokine Responses to An Acute Bout of High-intensity Interval Exercise: the Effect of Exercise Intensity and Volume

    Get PDF
    Acute increases in interleukin (IL)-6 following prolonged exercise are associated with the induction of a transient anti-inflammatory state (e.g., increases in IL-10) that is partly responsible for the health benefits of regular exercise. The purposes of this study were to investigate the IL-6–related inflammatory response to high-intensity interval exercise (HIIE) and to determine the impact of exercise intensity and volume on this response. Ten participants (5 males and 5 females) completed 3 exercise bouts of contrasting intensity and volume (LOW, MOD, and HIGH). The HIGH protocol was based upon standard HIIE protocols, while the MOD and LOW protocols were designed to enable a comparison of exercise intensity and volume with a fixed duration. Inflammatory cytokine concentrations were measured in plasma (IL-6, IL-10) and also determined the level of gene expression (IL-6, IL-10, and IL-4R) in peripheral blood. The plasma IL-6 response to exercise (reported as fold changes) was significantly greater in HIGH (2.70 ± 1.51) than LOW (1.40 ± 0.32) (P = 0.04) and was also positively correlated to the mean exercise oxygen uptake (r = 0.54, P < 0.01). However, there was no change in anti-inflammatory IL-10 or IL-4R responses in plasma or at the level of gene expression. HIIE caused a significant increase in IL-6 and was greater than that seen in low-intensity exercise of the same duration. The increases in IL-6 were relatively small in magnitude, and appear to have been insufficient to induce the acute systemic anti-inflammatory effects, which are evident following longer duration exercise

    Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling

    Full text link
    We propose a one-dimensional Hamiltonian H1DH_{1D} which supports Majorana fermions when dx2−y2d_{x^{2}-y^{2}}-wave superfluid appears in the ultracold atomic system and obtain the phase-separation diagrams both for the time-reversal-invariant case and time-reversal-symmetry-breaking case. From the phase-separation diagrams, we find that the single Majorana fermions exist in the topological superfluid region, and we can reach this region by tuning the chemical potential ÎŒ\mu and spin-orbit coupling αR\alpha_{R}. Importantly, the spin-orbit coupling has realized in ultracold atoms by the recent experimental achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold atomic system described by H1DH_{1D} is a promising platform to find the mysterious Majorana fermions.Comment: 5 papers, 2 figure
    • 

    corecore