1,037 research outputs found

    High phenotypic plasticity at the dawn of the eosauropterygian radiation

    Full text link
    The initial radiation of Eosauropterygia during the Triassic biotic recovery represents a key event in the dominance of reptiles secondarily adapted to marine environments. Recent studies on Mesozoic marine reptile disparity highlighted that eosauropterygians had their greatest morphological diversity during the Middle Triassic, with the co-occurrence of Pachypleurosauroidea, Nothosauroidea and Pistosauroidea, mostly along the margins of the Tethys Ocean. However, these previous studies quantitatively analysed the disparity of Eosauropterygia as a whole without focussing on Triassic taxa, thus limiting our understanding of their diversification and morphospace occupation during the Middle Triassic. Our multivariate morphometric analyses highlight a clearly distinct colonization of the ecomorphospace by the three clades, with no evidence of whole-body convergent evolution with the exception of the peculiar pistosauroid Wangosaurus brevirostris, which appears phenotypically much more similar to nothosauroids. This global pattern is mostly driven by craniodental differences and inferred feeding specializations. We also reveal noticeable regional differences among nothosauroids and pachypleurosauroids of which the latter likely experienced a remarkable diversification in the eastern Tethys during the Pelsonian. Our results demonstrate that the high phenotypic plasticity characterizing the evolution of the pelagic plesiosaurians was already present in their Triassic ancestors, casting eosauropterygians as particularly adaptable animals

    Explaining Instability in the Stability and Growth Pact

    Get PDF
    The Stability and Growth Pact clearly failed to prevent the euro crisis. We contend that the failure was due largely to the ability of the Member States to undermine the Pact’s operation. The European Commission served as a “watchdog” to monitor fiscal performance. The Member States themselves, however, collectively had the ability to change the content of the reports for individual states. We confirm the expectation that powerful Member States had the most success in undermining the role of the Commission. Perhaps more surprisingly, we find supporting evidence for our argument that governments with euroskeptic populations behind them were also more successful in weakening the Commission’s warnings. These results have broader theoretical implications concerning which mechanisms explain country-specific outcomes under a shared rule. Another contribution is the creation of a new data set of European Commission assessments of Member State economic programs and Council of Minister revisions

    Treatment of streptococcal pharyngitis with once-daily amoxicillin versus intramuscular benzathine penicillin g in low-resource settings : A randomized controlled trial

    Get PDF
    Background: Primary prevention of acute rheumatic fever is achieved by proper antibiotic treatment of group A β -hemolytic streptococcal (GAS) pharyngitis. Methods: To assess noninferiority of oral amoxicillin to intramuscular benzathine penicillin G (IM BPG). Children (2 to 12 years) meeting enrollment criteria were randomized 1:1 to receive antibiotic treatment in 2 urban outpatient clinics in Egypt and Croatia. Results: A total of 558 children (Croatia = 166, Egypt = 392) were randomized, with 368 evaluable in an intention-to-treat (ITT) analysis, and 272 evaluable in the per protocol (PP) analysis. In Croatia, ITT and PP treatment success rates were comparable for IM BPG and amoxicillin (2.5% difference vs 1.1% difference, respectively). In Egypt, amoxicillin was not comparable with IM BPG in ITT analysis (15.1% difference), but was comparable in PP analysis (-9.3% difference). Conclusion: If compliance is a major issue, a single dose of IM BPG may be preferable for treatment of GAS pharyngitis.publishersversionPeer reviewe

    Identification of Novel SNPs in Glioblastoma Using Targeted Resequencing

    Get PDF
    High-throughput sequencing opens avenues to find genetic variations that may be indicative of an increased risk for certain diseases. Linking these genomic data to other “omics” approaches bears the potential to deepen our understanding of pathogenic processes at the molecular level. To detect novel single nucleotide polymorphisms (SNPs) for glioblastoma multiforme (GBM), we used a combination of specific target selection and next generation sequencing (NGS). We generated a microarray covering the exonic regions of 132 GBM associated genes to enrich target sequences in two GBM tissues and corresponding leukocytes of the patients. Enriched target genes were sequenced with Illumina and the resulting reads were mapped to the human genome. With this approach we identified over 6000 SNPs, including over 1300 SNPs located in the targeted genes. Integrating the genome-wide association study (GWAS) catalog and known disease associated SNPs, we found that several of the detected SNPs were previously associated with smoking behavior, body mass index, breast cancer and high-grade glioma. Particularly, the breast cancer associated allele of rs660118 SNP in the gene SART1 showed a near doubled frequency in glioblastoma patients, as verified in an independent control cohort by Sanger sequencing. In addition, we identified SNPs in 20 of 21 GBM associated antigens providing further evidence that genetic variations are significantly associated with the immunogenicity of antigens

    Responses to systemic therapy in metastatic pheochromocytoma/paraganglioma: a retrospective multicenter cohort study

    Get PDF
    OBJECTIVE The therapeutic options for metastatic pheochromocytomas/paragangliomas (mPPGLs) include chemotherapy with cyclophosphamide/vincristine/dacarbazine (CVD), temozolomide monotherapy, radionuclide therapies, and tyrosine kinase inhibitors such as sunitinib. The objective of this multicenter retrospective study was to evaluate and compare the responses of mPPGLs including those with pathogenic variants in succinate dehydrogenase subunit B (SDHB), to different systemic treatments. DESIGN This is a retrospective analysis of treatment responses of mPPGL patients (n = 74) to systemic therapies. METHODS Patients with mPPGLs treated at 6 specialized national centers were selected based on participation in the ENSAT registry. Survival until detected progression (SDP) and disease-control rates (DCRs) at 3 months were evaluated based on imaging reports. RESULTS For the group of patients with progressive disease at baseline (83.8% of 74 patients), the DCR with first-line CVD chemotherapy was 75.0% (n = 4, SDP 11 months; SDHB [n = 1]: DCR 100%, SDP 30 months), with somatostatin peptide receptor-based radionuclide therapy (PPRT) 85.7% (n = 21, SDP 17 months; SDHB [n = 10]: DCR 100%, SDP 14 months), with 131I-meta-iodobenzylguanidine (131I-MIBG) 82.6% (n = 23, SDP 43 months; SDHB [n = 4]: DCR 100%, SDP 24 months), with sunitinib 100% (n = 7, SDP 18 months; SDHB [n = 3]: DCR 100%, SDP 18 months), and with somatostatin analogs 100% (n = 4, SDP not reached). The DCR with temozolomide as second-line therapy was 60.0% (n = 5, SDP 10 months; SDHB [n = 4]: DCR 75%, SDP 10 months). CONCLUSIONS We demonstrate in a real-life clinical setting that all current therapies show reasonable efficacy in preventing disease progression, and this is equally true for patients with germline SDHB mutations

    Science and Technology Issues in the 115th Congress

    Get PDF
    Science and technology (S&T) have a pervasive influence over a wide range of issues confronting the nation. Public and private research and development spur scientific and technological advancement. Such advances can drive economic growth, help address national priorities, and improve health and quality of life. The constantly changing nature and ubiquity of science and technology frequently create public policy issues of congressional interest. The federal government supports scientific and technological advancement directly by funding and performing research and development and indirectly by creating and maintaining policies that encourage private sector efforts. Additionally, the federal government establishes and enforces regulatory frameworks governing many aspects of S&T activities. This report briefly outlines an array of science and technology policy issues that may come before the 115th Congress. Given the rapid pace of S&T advancement and its importance in many diverse public policy issues, S&T-related issues not discussed in this report may come before the 115th Congress. The selected issues are grouped into 9 categories: - Overarching S&T Policy Issues, - Agriculture, - Biomedical Research and Development, - Defense, - Energy, - Environment and Natural Resources, - Homeland Security, - Information Technology, - Physical and Material Sciences, and - Space. Each of these categories includes concise analysis of multiple policy issues. The material presented in this report should be viewed as illustrative rather than comprehensive. Each section identifies CRS reports, when available, and the appropriate CRS experts to contact for further information and analysis

    New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk.

    Get PDF
    Levels of circulating glucose are tightly regulated. To identify new loci influencing glycemic traits, we performed meta-analyses of 21 genome-wide association studies informative for fasting glucose, fasting insulin and indices of beta-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 nondiabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with fasting glucose and HOMA-B and two loci associated with fasting insulin and HOMA-IR. These include nine loci newly associated with fasting glucose (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and C2CD4B) and one influencing fasting insulin and HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB-TMEM195 with type 2 diabetes. Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify type 2 diabetes risk loci, as well as loci containing gene variants that are associated with a modest elevation in glucose levels but are not associated with overt diabetes

    Long-term ecological research on Colorado Shortgrass Steppe

    Get PDF
    The SGS-LTER research site was established in 1980 by researchers at Colorado State University as part of a network of long-term research sites within the US LTER Network, supported by the National Science Foundation. Scientists within the Natural Resource Ecology Lab, Department of Forest and Rangeland Stewardship, Department of Soil and Crop Sciences, and Biology Department at CSU, California State Fullerton, USDA Agricultural Research Service, University of Northern Colorado, and the University of Wyoming, among others, have contributed to our understanding of the structure and functions of the shortgrass steppe and other diverse ecosystems across the network while maintaining a common mission and sharing expertise, data and infrastructure.Poster presented at the LTER All Scientists Meeting held in Estes Park, CO on September 10-13, 2012

    A new role for complement C3: regulation of antigen processing through an inhibitory activity.

    Get PDF
    International audienceIncreasing evidence underlines the involvement of complement component C3 in the establishment of acquired immunity which appears to play a complex role and to act at different levels. As antigen proteolysis by antigen presenting cells is a key event in the control of antigen presentation efficiency, and consequently in the quality of the immune response, we investigated whether C3 could modulate this step. Our results demonstrate for the first time that C3 can interfere with antigen proteolysis: (i) proteolysis of tetanus toxin (TT) by the lysosomal fraction from a human monocytic cell line (U937) is impaired in the presence of C3, (ii) this effect is C3-specific and involves the C3c fragment of the protein, (iii) C3c is effective even after disulfide disruption, but none of its three constitutive peptides is individually accountable for this inhibitory effect and (iv) the target-protease(s) exhibit(s) a serine-protease activity. The physiological relevance of our results is demonstrated by experiments showing a subcellular colocalisation of TT and C3 after their uptake by U937 and the reduction of TT proteolysis once internalised together with C3. These results highlight a novel role for C3 that broadens its capacity to modulate acquired immune response

    Metastatic Pheochromocytoma and Paraganglioma: Somatostatin Receptor 2 Expression, Genetics, and Therapeutic Responses

    Full text link
    CONTEXT: Pheochromocytomas and paragangliomas (PPGLs) with pathogenic mutations in the succinate dehydrogenase subunit B (SDHB) are associated with a high metastatic risk. Somatostatin receptor 2 (SSTR2)-dependent imaging is the most sensitive imaging modality for SDHB-related PPGLs, suggesting that SSTR2 expression is a significant cell surface therapeutic biomarker of such tumors. OBJECTIVE: Exploration of the relationship between SSTR2 immunoreactivity and SDHB immunoreactivity, mutational status, and clinical behavior of PPGLs. Evaluation of SSTR-based therapies in metastatic PPGLs. METHODS: Retrospective analysis of a multicenter cohort of PPGLs at 6 specialized Endocrine Tumor Centers in Germany, The Netherlands, and Switzerland. Patients with PPGLs participating in the ENSAT registry were included. Clinical data were extracted from medical records, and immunohistochemistry (IHC) for SDHB and SSTR2 was performed in patients with available tumor tissue. Immunoreactivity of SSTR2 was investigated using Volante scores. The main outcome measure was the association of SSTR2 IHC positivity with genetic and clinical-pathological features of PPGLs. RESULTS: Of 202 patients with PPGLs, 50% were SSTR2 positive. SSTR2 positivity was significantly associated with SDHB- and SDHx-related PPGLs, with the strongest SSTR2 staining intensity in SDHB-related PPGLs (P = .01). Moreover, SSTR2 expression was significantly associated with metastatic disease independent of SDHB/SDHx mutation status (P < .001). In metastatic PPGLs, the disease control rate with first-line SSTR-based radionuclide therapy was 67% (n = 22, n = 11 SDHx), and with first-line "cold" somatostatin analogs 100% (n = 6, n = 3 SDHx). CONCLUSION: SSTR2 expression was independently associated with SDHB/SDHx mutations and metastatic disease. We confirm a high disease control rate of somatostatin receptor-based therapies in metastatic PPGLs
    corecore