2,257 research outputs found

    Is there a single best estimator? Selection of home range estimators using area-under-the-curve

    Get PDF
    Background: Global positioning system (GPS) technology for monitoring home range and movements of wildlife has resulted in prohibitively large sample sizes of locations for traditional estimators of home range. We used areaunder- the-curve to explore the fit of 8 estimators of home range to data collected with both GPS and concurrent very high frequency (VHF) technology on a terrestrial mammal, the Florida panther Puma concolor coryi, to evaluate recently developed and traditional estimators. Results: Area-under-the-curve was the highest for Florida panthers equipped with Global Positioning System (GPS) technology compared to VHF technology. For our study animal, estimators of home range that incorporated a temporal component to estimation performed better than traditional first- and second-generation estimators. Conclusions: Comparisons of fit of home range contours with locations collected would suggest that use of VHF technology is not as accurate as GPS technology to estimate size of home range for large mammals. Estimators of home range collected with GPS technology performed better than those estimated with VHF technology regardless of estimator used. Furthermore, estimators that incorporate a temporal component (third-generation estimators) appeared to be the most reliable regardless of whether kernel-based or Brownian bridge-based algorithms were used and in comparison to first- and second-generation estimators. We defined third-generation estimators of home range as any estimator that incorporates time, space, animal-specific parameters, and habitat. Such estimators would include movement-based kernel density, Brownian bridge movement models, and dynamic Brownian bridge movement models among others that have yet to be evaluated

    Predicting spatial spread of rabies in skunk populations using surveillance data reported by the public

    Get PDF
    Background: Prevention and control of wildlife disease invasions relies on the ability to predict spatio-temporal dynamics and understand the role of factors driving spread rates, such as seasonality and transmission distance. Passive disease surveillance (i.e., case reports by public) is a common method of monitoring emergence of wildlife diseases, but can be challenging to interpret due to spatial biases and limitations in data quantity and quality. Methodology/Principal findings: We obtained passive rabies surveillance data from dead striped skunks (Mephitis mephitis) in an epizootic in northern Colorado, USA. We developed a dynamic patch-occupancy model which predicts spatio-temporal spreading while accounting for heterogeneous sampling. We estimated the distance travelled per transmission event, direction of invasion, rate of spatial spread, and effects of infection density and season. We also estimated mean transmission distance and rates of spatial spread using a phylogeographic approach on a subsample of viral sequences from the same epizootic. Both the occupancy and phylogeographic approaches predicted similar rates of spatio-temporal spread. Estimated mean transmission distances were 2.3 km (95% Highest Posterior Density (HPD95): 0.02, 11.9; phylogeographic) and 3.9 km (95% credible intervals (CI95): 1.4, 11.3; occupancy). Estimated rates of spatial spread in km/year were: 29.8 (HPD95: 20.8, 39.8; phylogeographic, branch velocity, homogenous model), 22.6 (HPD95: 15.3, 29.7; phylogeographic, diffusion rate, homogenous model) and 21.1 (CI95: 16.7, 25.5; occupancy). Initial colonization probability was twice as high in spring relative to fall. Conclusions/Significance: Skunk-to-skunk transmission was primarily local (< 4 km) suggesting that if interventions were needed, they could be applied at the wave front. Slower viral invasions of skunk rabies in western USA compared to a similar epizootic in raccoons in the eastern USA implies host species or landscape factors underlie the dynamics of rabies invasions. Our framework provides a straightforward method for estimating rates of spatial spread of wildlife diseases

    The TRENDS High-Contrast Imaging Survey. V. Discovery of an Old and Cold Benchmark T-dwarf Orbiting the Nearby G-star HD 19467

    Get PDF
    The nearby Sun-like star HD 19467 shows a subtle radial velocity (RV) acceleration of -1.37+/-0.09 m/s/yr over an 16.9 year time baseline (an RV trend), hinting at the existence of a distant orbiting companion. We have obtained high-contrast adaptive optics images of the star using NIRC2 at Keck Observatory and report the direct detection of the body that causes the acceleration. The companion, HD 19467 B, is dK=12.57+/-0.09 mag fainter than its parent star (contrast ratio of 9.4e-6), has blue colors J-K_s=-0.36+/-0.14 (J-H=-0.29+/-0.15), and is separated by 1.653+/-0.004" (51.1+/-1.0 AU). Follow-up astrometric measurements obtained over an 1.1 year time baseline demonstrate physical association through common parallactic and proper motion. We calculate a firm lower-limit of m>51.9^{+3.6}_{-4.3}Mjup for the companion mass from orbital dynamics using a combination of Doppler observations and imaging. We estimate a model-dependent mass of m=56.7^{+4.6}_{-7.2}Mjup from a gyrochronological age of 4.3^{+1.0}_{-1.2} Gyr. Isochronal analysis suggests a much older age of 9±19\pm1 Gyr, which corresponds to a mass of m=67.4^{+0.9}_{-1.5}Mjup. HD 19467 B's measured colors and absolute magnitude are consistent with a late T-dwarf [~T5-T7]. We may infer a low metallicity of [Fe/H]=-0.15+/-0.04 for the companion from its G3V parent star. HD 19467 B is the first directly imaged benchmark T-dwarf found orbiting a Sun-like star with a measured RV acceleration.Comment: Updated to reflect ApJ versio

    What Is the Proper Method to Delineate Home Range of an Animal Using Today’s Advanced GPS Telemetry Systems: The Initial Step

    Get PDF
    The formal concept of an animal’s home range, or derivations thereof, has been around for over half a century (Burt 1943). Within this time frame there have been countless published studies reporting home range estimators with no consensus for any single technique (Withey et al., 2001; Laver & Kelly 2008). Recent advances in global positioning system (GPS) technology for monitoring home range and movements of wildlife have resulted in locations that are numerous, more precise than very high frequency (VHF) systems, and often are auto correlated in space and time. Along with these advances, researchers are challenged with understanding the proper methods to assess size of home range or migratory movements of various species. The most acceptable method of home-range analysis with uncorrelated locations, kernel-density estimation (KDE), has been lauded by some for use with GPS technology (Kie et al., 2010) while criticized by others for errors in proper bandwidth selection (Hemson et al., 2005) and violation of independence assumptions (Swihart & Slade 1985b). The issue of autocorrelation or independence in location data has been dissected repeatedly by users of KDE for decades (Swihart & Slade 1985a; Worton 1995, but see Fieberg 2007) and can be especially problematic with data collected with GPS technology

    Use of unmanned aircraft systems (UAS) and multispectral imagery for quantifying agricultural areas damaged by wild pigs

    Get PDF
    Wild pigs (Sus scrofa) cause extensive damage to agricultural crops, resulting in lost production and income. A major challenge associated with assessing damage to crops is locating and quantifying damaged areas within agricultural fields. We evaluated a novel method using multispectral high-resolution aerial imagery, collected from sensors mounted on unmanned aircraft systems (UAS), and feature extraction techniques to detect and map areas of corn fields damaged by wild pigs in southern Missouri, USA. Damaged areas were extracted from orthomosaics using visible and near-infrared band combinations, an object-based classification approach, and hierarchical learning cycles. To validate estimates we also collected ground reference data immediately following flights. Overall accuracy of damage estimates to corn fields were similar among band combinations evaluated, ranging from 74% to 98% when using visible and near-infrared information, compared to 72%–94% with visible information alone. By including near-infrared with visible information, though, we found higher average kappa values (0.76) than with visible information (0.60) alone. We demonstrated that UAS are an appropriate platform for collecting high-resolution multispectral imagery of corn fields and that object-oriented classifiers can be effectively used to delineate areas damaged by wild pigs. The proposed approach outlines a new monitoring technique that can efficiently estimate damage to entire corn fields caused by wild pigs and also has potential to be applied to other crop types

    Multi-Isotopic (δ\u3csup\u3e2\u3c/sup\u3eH, δ\u3csup\u3e13\u3c/sup\u3eC, δ\u3csup\u3e15\u3c/sup\u3eN) Tracing of Molt Origin for Red-Winged Blackbirds Associated with Agro-Ecosystems

    Get PDF
    We analyzed stable-hydrogen (δ2H), carbon (δ13C) and nitrogen (δ15N) isotope ratios in feathers to better understand the molt origin and food habits of Red-winged Blackbirds (Agelaius phoeniceus) near sunflower production in the Upper Midwest and rice production in the Mid-South of the United States. Outer primary feathers were used from 661 after-second-year (ASY) male blackbirds collected in Minnesota, Montana, North Dakota and South Dakota (spring collection), and Arkansas, Louisiana, Mississippi, Missouri and Texas (winter collection). The best-fit model indicated that the combination of feather δ2H, δ13C and δ15N best predicted the state of sample collections and thus supported the use of this approach for tracing molt origins in Red-winged Blackbirds. When considering only birds collected in spring, 56% of birds were classified to their collection state on the basis of δ2H and δ13C alone. We then developed feather isoscapes for δ13C based upon these data and for δ2H based upon continental patterns of δ2H in precipitation. We used 81 birds collected at the ten independent sites for model validation. The spatially-explicit assignment of these 81 birds to the δ2H isoscape resulted in relatively high rates (~77%) of accurate assignment to collection states. We also modeled the spatial extent of C3 (e.g. rice, sunflower) and C4 (corn, millet, sorghum) agricultural crops grown throughout the Upper Midwest and Mid- South United States to predict the relative use of C3- versus C4-based foodwebs among sampled blackbirds. Estimates of C3 inputs to diet ranged from 50% in Arkansas to 27% in Minnesota. As a novel contribution to blackbird conservation and management, we demonstrate how such feather isoscapes can be used to predict the molt origin and interstate movements of migratory blackbirds for subsequent investigations of breeding biology (e.g. sex-specific philopatry), agricultural depredation, feeding ecology, physiology of migration and sensitivity to environmental change

    Effects of simulated removal activities on movements and space use of feral swine

    Get PDF
    Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use.We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and postperiods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas

    Effects of simulated removal activities on movements and space use of feral swine

    Get PDF
    Abundance and distribution of feral swine (Sus scrofa) in the USA have increased dramatically during the last 30 years. Effective measures are needed to control and eradicate feral swine populations without displacing animals over wider areas. Our objective was to investigate effects of repeated simulated removal activities on feral swine movements and space use.We analyzed location data from 21 feral swine that we fitted with Global Positioning System harnesses in southern MO, USA. Various removal activities were applied over time to eight feral swine before lethal removal, including trapped-and-released, chased with dogs, chased with hunter, and chased with helicopter. We found that core space-use areas were reduced following the first removal activity, whereas overall space-use areas and diurnal movement distances increased following the second removal activity. Mean geographic centroid shifts did not differ between pre- and postperiods for either the first or second removal activities. Our information on feral swine movements and space use precipitated by human removal activities, such as hunting, trapping, and chasing with dogs, helps fill a knowledge void and will aid wildlife managers. Strategies to optimize management are needed to reduce feral swine populations while preventing enlarged home ranges and displacing individuals, which could lead to increased disease transmission risk and human-feral swine conflict in adjacent areas

    Management of damage by elk (\u3ci\u3eCervus elaphus\u3c/i\u3e) in North America: a review

    Get PDF
    Abundant populations of elk (Cervus elaphus) are cherished game in many regions of the world and also cause considerable human–wildlife conflicts through depredation on agriculture and specialty crops, lack of regeneration to native ecosystems, collisions with vehicles and transmission of disease between free-ranging and farmed hoofstock. Management of elk varies, depending on current and historical agency objectives, configuration of the landscapes elk occupy, public perception, population density and behaviour of elk. Selection of the method to manage elk often requires knowledge of timing of impacts, duration relief from elk damage is desired, cost-effectiveness of management activities, tolerance of impacts, public perception of management strategies and motivation or habituation of elk to determine the likelihood of success for a proposed management action. We reviewed methods that are available to control abundant populations of elk that include lethal (e.g. hunting, sharpshooting) and non-lethal (e.g. fertility control, frightening) options. We promote an integrated approach that incorporates the timely use of a variety of cost-effective methods to reduce impacts to tolerable levels. Lethal options that include regulated hunting, sharpshooting and aerial gunning vary by likelihood of success, duration needed for population reduction, cost to implement reduction and public perceptions. Several non-lethal options are available to affect population dynamics directly (e.g. fertility control, translocation), protect resources from damage (e.g. fences, repellents) or influence space use of elk on a regular basis (e.g. harassment, frightening, herding dogs, humans). Public perception should be considered by agencies that are looking for feasible methods to control populations of elk. Disturbance to residents or visitors of public property may influence methods of management employed. Future research should explore the duration of harassment needed to avert elk from sensitive areas and costs to implement such programs. Several methods in our review were implemented on deer and additional research on elk and other cervids in conflict with human interests would provide a much needed component to our understanding of management methods available for ungulate species
    • …
    corecore