5,938 research outputs found

    Modeling Spatial Autocorrelation in Spatial Interaction Data: A Comparison of Spatial Econometric and Spatial Filtering Specifications

    Get PDF
    The need to account for spatial autocorrelation is well known in spatial analysis. Many spatial statistics and spatial econometric texts detail the way spatial autocorrelation can be identified and modelled in the case of object and field data. The literature on spatial autocorrelation is much less developed in the case of spatial interaction data. The focus of interest in this paper is on the problem of spatial autocorrelation in a spatial interaction context. The paper aims to illustrate that eigenfunction-based spatial filtering offers a powerful methodology that can efficiently account for spatial autocorrelation effects within a Poisson spatial interaction model context that serves the purpose to identify and measure spatial separation effects to interregional knowledge spillovers as captured by patent citations among high-technology-firms in Europe.

    Hybridization and spin decoherence in heavy-hole quantum dots

    Full text link
    We theoretically investigate the spin dynamics of a heavy hole confined to an unstrained III-V semiconductor quantum dot and interacting with a narrowed nuclear-spin bath. We show that band hybridization leads to an exponential decay of hole-spin superpositions due to hyperfine-mediated nuclear pair flips, and that the accordant single-hole-spin decoherence time T2 can be tuned over many orders of magnitude by changing external parameters. In particular, we show that, under experimentally accessible conditions, it is possible to suppress hyperfine-mediated nuclear-pair-flip processes so strongly that hole-spin quantum dots may be operated beyond the `ultimate limitation' set by the hyperfine interaction which is present in other spin-qubit candidate systems.Comment: 7 pages, 3 figure

    Exponential decay in a spin bath

    Full text link
    We show that the coherence of an electron spin interacting with a bath of nuclear spins can exhibit a well-defined purely exponential decay for special (`narrowed') bath initial conditions in the presence of a strong applied magnetic field. This is in contrast to the typical case, where spin-bath dynamics have been investigated in the non-Markovian limit, giving super-exponential or power-law decay of correlation functions. We calculate the relevant decoherence time T_2 explicitly for free-induction decay and find a simple expression with dependence on bath polarization, magnetic field, the shape of the electron wave function, dimensionality, total nuclear spin I, and isotopic concentration for experimentally relevant heteronuclear spin systems.Comment: 4+ pages, 3 figures; v2: 9 pages, 3 figures (added four appendices with extensive technical details, version to appear in Phys. Rev. B

    Infrared Behaviour and Running Couplings in Interpolating Gauges in QCD

    Full text link
    We consider the class of gauges that interpolates between Landau- and Coulomb-gauge QCD, and show the non-renormalisation of the two independent ghost-gluon vertices. This implies the existence of two RG-invariant running couplings, one of which is interpreted as an RG-invariant gauge parameter. We also present the asymptotic infrared limit of solutions of the Dyson-Schwinger equations in interpolating gauges. The infrared critical exponents of these solutions as well as the resulting infrared fixed point of one of the couplings are independent of the gauge parameter. This coupling also has a fixed point in the Coulomb gauge limit and constitutes a second invariant charge besides the well known colour-Coulomb potential.Comment: 8 pages, 2 figures; v2: minor changes, version published in PR

    Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells

    Get PDF
    We demonstrate enhanced external quantum efficiency and current-voltage characteristics due to scattering by 100 nm silver nanoparticles in a single 2.5 nm thick InGaN quantum well photovoltaic device. Nanoparticle arrays were fabricated on the surface of the device using an anodic alumina template masking process. The Ag nanoparticles increase light scattering, light trapping, and carrier collection in the III-N semiconductor layers leading to enhancement of the external quantum efficiency by up to 54%. Additionally, the short-circuit current in cells with 200 nm p-GaN emitter regions is increased by 6% under AM 1.5 illumination. AFORS-Het simulation software results were used to predict cell performance and optimize emitter layer thickness

    Modelling spatial autocorrelation in spatial interaction data

    Get PDF
    Spatial interaction models of the gravity type are widely used to model origindestination flows. They draw attention to three types of variables to explain variation in spatial interactions across geographic space: variables that characterise an origin region of a flow, variables that characterise a destination region of a flow, and finally variables that measure the separation between origin and destination regions. This paper outlines and compares two approaches, the spatial econometric and the eigenfunction-based spatial filtering approach, to deal with the issue of spatial autocorrelation among flow residuals. An example using patent citation data that capture knowledge flows across 112 European regions serves to illustrate the application and the comparison of the two approaches

    Free-induction decay and envelope modulations in a narrowed nuclear spin bath

    Full text link
    We evaluate free-induction decay for the transverse components of a localized electron spin coupled to a bath of nuclear spins via the Fermi contact hyperfine interaction. Our perturbative treatment is valid for special (narrowed) bath initial conditions and when the Zeeman energy of the electron bb exceeds the total hyperfine coupling constant AA: b>Ab>A. Using one unified and systematic method, we recover previous results reported at short and long times using different techniques. We find a new and unexpected modulation of the free-induction-decay envelope, which is present even for a purely isotropic hyperfine interaction without spin echoes and for a single nuclear species. We give sub-leading corrections to the decoherence rate, and show that, in general, the decoherence rate has a non-monotonic dependence on electron Zeeman splitting, leading to a pronounced maximum. These results illustrate the limitations of methods that make use of leading-order effective Hamiltonians and re-exponentiation of short-time expansions for a strongly-interacting system with non-Markovian (history-dependent) dynamics.Comment: 13 pages, 9 figure

    Effects of temperature and carbon source on the isotopic fractionations associated with O_2 respiration for ^(17)O/^(16)O and ^(18)O/^(16)O ratios in E. coli

    Get PDF
    ^(18)O/^(16)O and ^(17)O/^(16)O ratios of atmospheric and dissolved oceanic O_2 are used as biogeochemical tracers of photosynthesis and respiration. Critical to this approach is a quantitative understanding of the isotopic fractionations associated with production, consumption, and transport of O_2 in the ocean both at the surface and at depth. We made measurements of isotopic fractionations associated with O_2 respiration by E. coli. Our study included wild-type strains and mutants with only a single respiratory O_2 reductase in their electron transport chains (either a heme-copper oxygen reductase or a bd oxygen reductase). We tested two common assumptions made in interpretations of O_2 isotope variations and in isotope-enabled models of the O_2 cycle: (i) laboratory-measured respiratory ^(18)O/^(16)O isotopic fractionation factors (^(18)α) of microorganisms are independent of environmental and experimental conditions including temperature, carbon source, and growth rate; And (ii) the respiratory ‘mass law’ exponent, θ, between ^(18)O/^(16)O and ^(17)O/^(16)O, ^(17)α = (^(18)α)^θ, is universal for aerobic respiration. Results demonstrated that experimental temperatures have an effect on both ^(18)α and θ for aerobic respiration. Specifically, lowering temperatures from 37 to 15 °C decreased the absolute magnitude of ^(18)α by 0.0025 (2.5‰), and caused the mass law slope to decrease by 0.005. We propose a possible biochemical basis for these variations using a model of O_2 reduction that incorporates two isotopically discriminating steps: the reversible binding and unbinding of O_2 to a terminal reductase, and the irreversible reduction of that O_2 to water. Finally, we cast our results in a one-dimensional isopycnal reaction-advection-diffusion model, which demonstrates that enigmatic δ^(18)O and Δ^(17)O variations of dissolved O_2 in the dark ocean can be understood by invoking the observed temperature dependence of these isotope effects

    CommAID: Visual Analytics for Communication Analysis through Interactive Dynamics Modeling

    Full text link
    Communication consists of both meta-information as well as content. Currently, the automated analysis of such data often focuses either on the network aspects via social network analysis or on the content, utilizing methods from text-mining. However, the first category of approaches does not leverage the rich content information, while the latter ignores the conversation environment and the temporal evolution, as evident in the meta-information. In contradiction to communication research, which stresses the importance of a holistic approach, both aspects are rarely applied simultaneously, and consequently, their combination has not yet received enough attention in automated analysis systems. In this work, we aim to address this challenge by discussing the difficulties and design decisions of such a path as well as contribute CommAID, a blueprint for a holistic strategy to communication analysis. It features an integrated visual analytics design to analyze communication networks through dynamics modeling, semantic pattern retrieval, and a user-adaptable and problem-specific machine learning-based retrieval system. An interactive multi-level matrix-based visualization facilitates a focused analysis of both network and content using inline visuals supporting cross-checks and reducing context switches. We evaluate our approach in both a case study and through formative evaluation with eight law enforcement experts using a real-world communication corpus. Results show that our solution surpasses existing techniques in terms of integration level and applicability. With this contribution, we aim to pave the path for a more holistic approach to communication analysis.Comment: 12 pages, 7 figures, Computer Graphics Forum 2021 (pre-peer reviewed version
    • …
    corecore