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ABSTRACT. Spatial interaction models of the gravity type are widely used to model origin-
destination flows. They draw attention to three types of variables to explain variation in spatial 
interactions across geographic space: variables that characterise an origin region of a flow, 
variables that characterise a destination region of a flow, and finally variables that measure the 
separation between origin and destination regions. This paper outlines and compares two 
approaches, the spatial econometric and the eigenfunction-based spatial filtering approach, to 
deal with the issue of spatial autocorrelation among flow residuals.  An example using patent 
citation data that capture knowledge flows across 112 European regions serves to illustrate the 
application and the comparison of the two approaches. 
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1. INTRODUCTION 
 

Spatial autocorrelation in geocoded data can be a serious problem, rendering conventional 

statistical analysis unsound and requiring specialised spatial analytical tools. Spatial 

autocorrelation refers to the pairwise correlation of georeferenced observations for a single 

variable. Correlation retains its classical meaning of association, whereas ‘auto’ means self 

and spatial describes the manner in which self-correlation arises. Autocorrelation is 

attributable to the configurational arrangement of observations. The problem arises in 

situations where the observations are non-independent over space. That is, nearby spatial units 

(regions) are associated in some way. Sometimes, this association is due to a poor match 

between the spatial extent of a phenomenon of interest and the administrative units for which 

data are available. Sometimes it is due to a spatial spillover effect. And, sometimes it is 

attributable to common underlying factors. The complications are similar to those found in 

time series analysis, but are exacerbated by the multidirectional, two-dimensional nature of 

dependence in space, rather than the unidirectional, one-dimensional nature in time. 

Spatial interaction or flow data pertain to measurements each of which is associated with a 

link or a pair of origin-destination locations that represent points or areas (regions) in space. 

While a voluminous literature exists for spatial autocorrelation with a focus of interest on the 

specification and estimation of models for cross-sectional attribute data, there is scant 

attention paid to its counterpart in spatial interaction data. For example, there is no explicit 

reference to spatial flows data in some of the commonly cited spatial econometric and 

statistics texts, such as Anselin (1988) and Cressie (1991). But Griffith (1988, pp. 66-79) 

implicitly addresses this topic, and Griffith and Jones (1980) treat this very problem. 

Furthermore, some relevant research has been done about network autocorrelation (see Black, 

1992, Black and Thomas, 1998, Tiefelsdorf and Braun, 1999); but this work treats flows in an 

indirect way. 
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Modelling spatial interactions has a long and distinguished history in geography and 

regional science (see, Sen and Smith, 1995, for a review). Spatial interaction models focus on 

dyads of regions rather than on individual regions. They aim to explain the variation of spatial 

interaction across geographic space. In doing so, they draw attention to three types of push-

pull variables: those relating to properties of origin regions (origin factor); those relating to 

properties of destination regions (destination factor); and, those relating to the spatial 

separation between origin and destination regions (separation factor). Spatial interaction 

models are said to be misspecified if the residuals are spatially autocorrelated, violating the 

independence assumption. This problem has been largely neglected so far, with very few 

exceptions (see, for example, Brandsma and Ketellapper, 1979, Griffith and Jones, 1980, 

Baxter, 1987, Bolduc, Laferiere and Santarossa, 1992, 1995, Fischer, Reismann and 

Scherngell, 2006a, LeSage and Pace, 2007). This neglect may be because spatial interaction 

models are more complex than models for the geographic distribution of attribute data, with 

each region being associated with several values as an origin as well as a destination so that 

specification of the autocorrelation structure is less obvious. 

This paper outlines and compares two approaches that could be used to account for spatial 

autocorrelation in a spatial interaction modelling context. One approach involves directly 

modelling spatial autocorrelation among flow residuals by introducing a spatial error structure 

that reflects origin and destination autoregressive dependence among origin-destination flows. 

This view leads to spatial autoregressive model specifications that represent not only 

extensions of the conventional spatial interaction models, but also extensions of the spatial 

regression models, the workhorses of applied spatial econometrics. 

The other approach, eigenfunction spatial filtering, starts from the misspecification 

interpretation perspective of spatial autocorrelation, which assumes that spatial 

autocorrelation in the disturbances is induced by missing origin and destination variables, 
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which themselves are spatially autocorrelated. The approach itself is a non-parametric 

technique that accounts for the inherent spatial autocorrelation in spatial interaction models by 

introducing appropriate synthetic surrogate variates (i.e., spatial filters) for the origin and 

destination variables, and hereby exploiting an eigenfunction decomposition associated with 

the Moran’s I (MI) statistic of spatial autocorrelation. 

The structure of the paper is as follows. The section that follows sets forth the context and 

framework for the discussion, with a particular focus on the log-normal spatial interaction 

model version, one of the most common specifications employed in applied spatial interaction 

data analysis, as well as the Poisson regression generalised linear model version, today’s 

preferred specification. Section 3 outlines the spatial econometric approach that generalises 

the classical spatial interaction models to spatial econometric origin-destination flow models. 

These models are formally equivalent to conventional regression models with spatially 

autocorrelated error terms. But they differ in terms of the data analysed and the way in which 

the spatial weights matrix is defined. Section 4 moves attention to the eigenfunction-based 

spatial filtering approach that accounts for the inherent spatial autocorrelation in spatial 

interaction models with a composite map pattern component (i.e., a spatial filter), rather than 

simply identifying a global spatial autocorrelation parameter for a spatial autoregressive 

process. The aim of this non-parametric approach is to control spatial autocorrelation by 

introducing appropriate synthetic variables that serve as surrogates for spatially autocorrelated 

missing origin and destination variables. This shift in focus leads to spatial filter variants of 

the classical spatial interaction model. Patent citation data that capture knowledge flows 

across 112 European regions are used in Section 5 to compare the workings of the two 

approaches. The final section concludes the paper with a final commentary about the two 

approaches. 
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2. BACKGROUND 
 

Suppose we have a spatial system consisting of n regions, where i denotes the origin 

region ( 1,..., )i n=  and j the destination region ( 1,..., ).j n=   Let ( , )m i j  (i, j=1, …, n) denote 

observations on random variables, say ( , )M i j , each of which corresponds, for example, to 

flows of people, commodities, capital or knowledge from region i to region j. The ( , )M i j  are 

assumed to be independent random variables. They are sampled from a specified probability 

distribution that is dependent upon some mean, say ( , ).i jμ  Let us assume that no a priori 

information is given about the row and column totals of the flow matrix [ ( , )]m i j . Then the 

mean interaction frequencies between origin i and destination j may be modelled by 

 

(1) ( , ) ( ) ( ) ( , )i j c A i B j F i jα βμ =  

 

where ( , ) [ ( , )]= Ei j M i jμ  is the expected flow, c denotes a constant term, the quantities ( )A i  

and ( )B j  are called origin and destination factors or variables, respectively, α and β  indicate 

the relative importance, and ( , )F i j  is a separation factor that constitutes the very core of 

spatial interaction models. Following Sen and Sööt (1981), we specify the separation factor in 

form of a multivariate exponential deterrence function 

 

(2) 
1

exp( , ) ( , )
K

k
k

kF i j d i jθ
=

⎡ ⎤= ⎢ ⎥⎣ ⎦
∑  

 
where ( , )kd i j  are K measures of separation between i and j, and kθ  are the associated 

parameters. The advantage of this specification stems from its ability to approximate a wide 

variety of deterrence functions, including the power and the gamma or Tanner function.  
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Equation (1) is a very general version of the classical spatial interaction model. The 

multivariate exponential specification (2) of the separation factor yields the exponential 

spatial interaction model that can be expressed equivalently as a log-additive model of the 

form1 

 

(3) 
1

( , ) ( ) ( ) ( , ) ( , )k

K
k

k

y i j a i b j d i j ε i jκ α β θ
=

= + + + +∑  

 
with ( , ) ln[ ( , )]y i j i jμ≡ , ln ( )cκ ≡ , ( ) ln[ ( )],a i A i≡  and ( ) ln[ ( )]b j B j≡ . Of note is that the 

back-transformation of this log-linear specification results in an error structure of the 

exponential spatial interaction model being multiplicative. The parameters 

1...,, , and ( )Kκ α β θ θ θ=  have to be estimated if future flows are to be predicted. 

There are 2n  equations of the form (3). Using matrix notation we may write these 
equations more compactly as 
 
(4) γ ε+y X=  

 
where y  denotes the 2( )-by-1N n=  vector of observations on the interaction variable (see 

Table 1 for the data organisation convention). X is the N-by-(K+3) matrix of observations on 

the explanatory variables including the origin, destination, separation variables, and the 

intercept, γ  is the associated (K+3)-by-1 parameter vector, and the N-by-1 vector 

[ (1,1), ..., ( , )]Tε ε n nε =  denotes the vectorised form of [ ( , )]ε i j . Intraregional unit flows can 

be eliminated by removing the n cases for which the origin and destination IDs are the same 

(i.e., IDorigin=IDdestination), and this is done in this paper. Thus, we consider the case of 

interregional flows with ( 1)N n n= −  observations. 
 

Table 1 about here 
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If spatial interaction model (4) is correctly specified, then provided that the regressor 

variables are not perfectly collinear, γ  is estimable under the assumption that the error terms 

are iid with zero mean and constant variance2, and the OLS estimators are best linear unbiased 

estimators. A violation of this assumption may lead to spatial autocorrelation. 

Flowerdew and Aitkin (1982) question the appropriateness of the widely used log-normal 

specification of the spatial interaction model, and suggest instead that the observed flows 

follow a Poisson distribution with  

 

(5) 
( , )exp( ( , )) ( , ){ ( , )}

( , )!

m i ji j i jP m i j
m i j

μ μ−
=  

 

where P{.} denotes probability, and the expected value, ( , )i jμ , is given by Equation (1). 

Equation (5) models flows between origin i and destination j as inter-point movement counts. 

Hence, this is the specification of a discrete distribution. Later, Flowerdew and Lovett (1988) 

extend Equation (5) to singly- and doubly-constrained spatial interaction models (see Wilson, 

1970), again assuming independent origin and destination factors. In other words, this Poisson 

probability model formulation does not incorporate spatial dependencies in the origin and 

destination terms 3 . Consequences of overlooking such spatial structure effects are 

conceptualised in Curry (1972), with their presence empirically demonstrated by Griffith and 

Jones (1980). Accounting for spatial autocorrelation in the disturbances, the focus of this 

paper, corrects for a source of specification error. 
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3. THE SPATIAL ECONOMETRIC PERSPECTIVE 
 

One way to incorporate spatial autocorrelation into a spatial interaction model of type (4) 

is to specify a spatial process for the disturbance terms, structured to follow a (first-order) 

spatial autoregressive process4. In this framework, the disturbance term ( , )i jε  corresponding 

to the dyad (i, j) of regions is modelled as a weighted average of disturbances corresponding 

to other dyads, plus a purely random element, say ( , ).i jη  This weighted average involves a 

scalar parameter, say ρ , and a set of weights that describe the spatial dependencies. 

Formally, 

 
(6) γ ε= +y X  

 
i.e., a spatial interaction model with the N-by-1 disturbance vector ε  generated as 

 
(7) ε ρ ε η= +W  

 
where ρ  is the spatial autoregressive coefficient for the error lag εW  and η  is an N-by-1 

vector of i.i.d. normally distributed random terms with zero mean and variance 2.σ  W is an 

N-by-N (row-standardised) non-negative spatial weights matrix with zeros on the diagonal 

where ( 1)N n n= − . It is convenient to assume that | | 1ρ < , resulting in the matrix N ρ−I W  

to be non-singular for all | | 1.ρ <  Given these assumptions, it follows from Equation (7) that 

1( )ε ρ η−= −I W . Thus, ( ) 0E ε =  and ( ) ( )TE ε ε ρ= Ω  where  

 
(8) 2 2 1( ) ( ) [( ) ( )]T

N Nρ σ ρ σ ρ ρ −Ω = = − −V I W I W  
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To ensure that the variance-covariance matrix ( )ρΩ  is positive definite and, thus,  

non-singular, the autocorrelation parameter ρ  has to be within its feasible range 

1 1
min max] , [ρ λ λ− −∈ , where minλ  and maxλ  are the smallest and largest eigenvalues of W, 

respectively, with min max0λ λ< <  (Hepple 1995). Since the row sums of W are bounded 

uniformly in absolute value by one, the Perron-Frobenius theorem (Cox and Miller 1965) 

states that max 1λ =  and min1 λ≤− , so that we have the restriction of | | 1ρ <  for the stationarity 

of spatial origin-destination models of type (6)-(7). If | | 1,ρ >  the model would be explosive 

and non-stationary. 

 
Specification of the spatial weights matrix W   

While the conventional notion of spatial autocorrelation in a cross-sectional regression 

context that involves a sample of n regions relies on an n-by-n spatial weights matrix to 

represent the connectivity structure between regions, in a spatial interaction context where the 

y-vector reflects flows between origins and destinations, there is a need to extend the notion 

of spatial autocorrelation to a concept of network spatial autocorrelation or spatial 

connectivity between origin-destination dyads of regions. This requires shifting attention from 

a two-dimensional space { , | ; , 1,..., }i j i j i j n≠ =  to a four-dimensional space 

{ , , , | , ; , 1,..., ; , 1,..., }i j r s i j r s i j n r s n≠ ≠ = = : the geographical space in which flow origins 

(such as i and r), on the one hand, and flow destinations (such as j and s), on the other, are 

located, in either of which there may be spatial dependence in flow levels 

originating/terminating in proximate regions. Proximity is defined in terms of first-order 

origin-related and destination-related contiguity relations specified in an N-by-N spatial 

weights matrix *W W Wo d= +  that reflect the cumulative impact of origin and destination 

interaction effects5. Formally, we define the elements of the origin-based spatial weights 

matrix Wo  by 
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(9) 
1 if and ( , ) 1,  and

( , ; , )
0 otherwise

o j s c i r
w i j r s

= =⎧
= ⎨
⎩

 

 
where ( , )c i r  is the element of a conventional n-by-n first-order contiguity matrix with 

 

(10) 
1 if , and and have a common border, and

( , )
0 otherwise

i r i r
c i r

≠⎧
= ⎨
⎩

 

 

This spatial weights matrix Wo  specifies an origin-based neighbourhood set for each origin-

destination pair (i, j). An element ( , ; , )ow i j r s  defines an origin-destination pair (r, s) as 

being a ‘neighbour’ of (i, j) if the origin regions i and r are contiguous spatial units and j = s.  

As a parallel to Wo the destination-based spatial weights matrix Wd  is defined to consist 

of elements 

 
 

(11) 
1 if and ( , ) 1, and 

( , ; , )
0 otherwise

d i r c j s
w i j r s

= =⎧
= ⎨
⎩

 

 
where 
 

(12) 
1 if , and and have a common border, and

( , )
0 otherwise

j s j s
c j s

≠⎧
= ⎨
⎩

 

 
Then the elements of the row-standardised N-by-N spatial weights matrix 

{ ( , ; , ); , , 1,...,  and ; , 1,..., }w i j r s i j i j n r s r s n= ≠ = ≠ =W  are given by  

 

(13) 
*

*

, 1
( , ) ( , )

( , ; , )( , ; , )
( , ; , )

N

r s
r s i j

w i j r sw i j r s
w i j r s

′ ′=
′ ′ ≠

=
′ ′∑
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for  and ,i r j s≠ ≠  and by definition ( , ; , ) 0w i j r s =  for and .i r j s= =  

 

Maximum Likelihood Estimation 

The parameters to be estimated in the spatial interaction model (6) with errors (7) are 

2, ηγ σ  and ρ . The maximum likelihood estimates can be obtained from the concentrated log-

likelihood function of the form 

 

(14) 2( ) ln | | ln ( ( ))N
NC Sρ ρ ρ= + − −I WL  

 

where ( )S ρ  represents the sum of squared errors expressed as a function of the scalar 

parameter ρ  alone after concentrating out the parameters and ,γ σ  and C denotes a constant 

not depending on ρ . The optimisation can be performed with a sophisticated optimisation 

routine, or with a simple grid search. 

The computationally troublesome aspect in numerical maximisation of the concentrated 

log-likelihood function is the need to compute the log-determinant of the N-by-N matrix 

( )N ρ−I W . Standard algorithms for maximum likelihood estimation of the model (6)-(7) 

become difficult as N increases. Computational time for computing this determinant increases 

with the cube of N for dense matrices. While W is an N-by-N matrix, it is sparse by 

construction. A sparse matrix is one that contains a large proportion of zero elements. Thus, 

sparse Cholesky decomposition algorithms may be used to efficiently tackle the N-by-N log-

determinant problem for larger N. Sparse algorithms decrease the storage needed for W  and 

( ),N ρ−I W  and greatly accelerate computations (see Pace and Barry, 1997). 
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4. THE EIGENFUNCTION SPATIAL FILTERING APPROACH 
 

The eigenfunction spatial filtering approach represents an alternative methodology to 

account for a specific type of spatial autocorrelation in the disturbances, namely spatial 

autocorrelation arising from missing origin/destination variables that are spatially correlated6. 

The primary motivation for this approach in the current context is to allow spatial analysts to 

compute OLS estimators for the parameters of the log-normal spatial interaction model, as 

well as generalised linear model Poisson regression spatial interaction parameter estimates, 

while ensuring that the required model assumptions are met. The approach outlined in this 

section derives from the eigenfunction spatial filtering approach devised by Griffith (1996, 

2000, 2002, 2003, 2004) for attribute data. This approach is semi-parametric in nature, and 

aims to control for spatial autocorrelation by introducing appropriate synthetic variables that 

serve as surrogates for spatially autocorrelated missing origin and destination variables. These 

synthetic variables are derived as linear combinations of eigenvectors that come from the 

following modified version of the conventional n-by-n binary 0-1 contiguity matrix C: 

 

(15) 1 1( ) ( )T T
n n− −I 11 C I 11  

 

where I is the n-by-n identity matrix, and 1 is an n-by-1 vector of ones. This particular matrix 

expression appears in the numerator of the Moran’s I (MI) statistic of spatial autocorrelation 

defined for attribute data. Tiefelsdorf and Boots (1995) show that all of the eigenvalues of 

expression (15) relate to distinct MI values. 

An eigenfunction linked to some geographic contiguity matrix C may be interpreted in the 

context of latent map pattern as follows (Getis and Griffith 2002): The first eigenvector, say 
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1E , is the set of numerical values that has the largest MI value achievable for any set of 

numerical values, for the given geographic contiguity matrix. The second eigenvector,  2 ,E  is 

the set of numerical values that has the largest achievable MI for any set of numerical values 

that is uncorrelated with 1.E  This sequential construction of eigenvectors continues through 

,nE  which is the set of numerical values that has the largest negative MI achievable by any 

set of numerical values that is uncorrelated with the preceding (n–1) eigenvectors. These n 

eigenvectors describe the full range of all possible mutually orthogonal and uncorrelated map 

patterns, and may be interpreted as synthetic map variables that represent specific natures 

(that is, positive or negative) and degrees (that is, negligible, weak, moderate, strong) of 

potential spatial autocorrelation. Eigenvector calculations often can be restricted to only those 

that are prominent (e.g., have an associated predesignated minimum MI value of, say, 0.25), 

and represent the nature of the detected spatial autocorrelation (e.g., positive).  

The eigenvector spatial filtering approach, based upon a stepwise selection criterion, adds 

a minimally sufficient set of eigenvectors as proxies for missing origin and destination 

variables, and in doing so accounts for spatial autocorrelation among the observations by 

inducing mutual dyad error independence. This leads to a spatial filter specification of the 

spatial interaction model (1)-(2) that may be described as 

 

(16)  
1 1 1

( , ) exp[ ] ( ) exp[ ] ( ) exp[ ( , )]
Q R K

k
iq q jr r k

q r k

i j c E A i E B j d i jα βμ ψ ϕ θ
= = =

= ∑ ∑ ∑  

 

where ( , ),i jμ  ( , )kd i j , c, α, β, kθ (k=1, …, K), ( )A i and ( )B j  are defined as above, Q and R 

denote selected subsets of the n eigenvectors that have been chosen by supervised selection to 

furnish a good description of flows out of the origins and flows into the destinations, 

respectively, and qψ  and rϕ  are the respective coefficients for the linear combinations of 
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eigenvectors that constitute the origin and destination spatial filters, namely 
1

Q
iq qq

E ψ
=∑ and 

1

R
jr rr

E ϕ
=∑ . For these spatial filters, which are linear combinations of the eigenvectors of 

expression (15) and represent the spatial autocorrelation components of the missing origin and 

destination variables, ( 1,..., )q q Qψ =  and ( 1,..., )r r Rϕ =  are regression coefficients that 

indicate the relative importance of each distinct map pattern in accounting for spatial 

autocorrelation in the flows structure.  

 

The Spatial Filtering Model Specification of the Log-Normal Additive Model 

Spatial filter spatial interaction model (16) can be expressed equivalently in log-additive 

form, in order to link it to a normal probability distribution for the error term, as 

 

(17) 
1 1 1

( , ) ( ) ( ) ( , ) ( , )
Q R K

k
iq q jr r k

q r k

y i j E a i E b j d i j i jκ ψ α ϕ β θ ε
= = =

= + + + + + +∑ ∑ ∑  

 

OLS can be employed to estimate the model parameters. All conventional diagnostic statistics 

developed for linear regression analysis can be computed and interpreted without having to 

develop spatially adjusted counterparts. The major numerical difficulty of the spatial filter 

model version is that eigenfunctions have to be calculated, a formidable computational task 

for larger spatial interaction systems (i.e., large n)7. 

 

Specification of a Conventional Poisson Spatial Interaction Model  

Equation (3) as a mean response, and hence without the error term, can be estimated with 

the data organisation given in Table 1 (IDorigin ≠ IDdestination) via Poisson regression through the 

use of a generalised linear model algorithm coupled with a Poisson distribution and its 
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appropriate link function. Parameter estimation can be achieved either with iteratively 

reweighted least squares or maximum likelihood techniques. 

 

Specification of a Spatial Filter Spatial Interaction Model  

Spatial filter counterparts to the spatial econometric specification can be obtained in one 

of two ways: (i) by augmenting the set of covariates with the set of candidate eigenvectors – 

relating to Equation (17); and, (ii) by estimating parameters for this augmented set with a 

Poisson regression – relating directly to Equation (16). The origin candidate eigenvectors are 

obtained from U⊗1 E , whereas the destination candidate eigenvectors are obtained from 

U ⊗E 1 , where UE  is the set of candidate eigenvectors (e.g., those whose associated MI value, 

when divided by the maximum possible MI value, exceeds 0.25), and ⊗  denotes the 

Kronecker product. 

 

5. AN ILLUSTRATIVE APPLICATION OF THE APPROACHES 
 

Patent citation data are used to illustrate the way the two approaches could be applied to 

control for spatial autocorrelation among the residuals in a spatial interaction model. Such 

data recorded in patent documents are widely recognised as a rich and fruitful source for the 

study of the spatial dimension of knowledge transmission using patent citations (see, for 

example, Jaffe and Trajtenberg, 2002, Fischer, Scherngell and Jansenberger, 2006b). 

 

The Context 

We use interregional patent citation flows as the dependent variable in the models. The 

data specifically relate to citations between European high-tech patents. By European patents 

we mean patent applications at the European Patent Office assigned to high-tech firms located 

in Europe. High-technology is defined to include the International Standard Industrial 
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Classification (ISIC)-sectors of aerospace (ISIC 3845), electronics-telecommunication (ISIC 

3832), computers and office equipment (ISIC 3825), and pharmaceuticals (ISIC 3522). Self-

citations (i.e., citations from patents assigned to the same firm) have been excluded, given our 

interest in pure externalities as evidenced by interfirm knowledge spillovers.  

It is well known that the observation of citations is subject to a truncation bias, because 

we observe citations for only a portion of the life of an invention. To avoid this bias in the 

analysis, we have established a five-year window (that is, 1985-1989, 1986-1990, …, 1993-

1997) to count citations to a patent8. The observation period is 1985-1997 with respect to 

cited patents and 1990-2002 with respect to citing patents. The sample used in this 

contribution is restricted to inventors located in n = 112 regions, generally NUTS-2 regions, 

covering the core of ‘Old Europe,’ including Germany (38 regions), France (21 regions), Italy 

(20 regions), the Benelux countries (24 regions), Austria (8 regions), and Switzerland (one 

region), resulting in N = 12,432 interregional flows. 

Subject to caveats relative to the relationship between patent citations and knowledge 

spillovers, these data allow us to identify and measure spatial separation effects for 

interregional knowledge spillovers in this interaction system of 112 regions. Our interest is 

focused on K = 3 separation measures: (1)d  is an N-by-1 vector that represents geographic 

distance measured in terms of the great circle distance (in kilometres) between the regions 

represented by their economic centres; (2)d  is an N-by-1 country dummy variable vector that 

represents border effects measured in terms of the existence of country borders between the 

regions; and, (3) ,d  is an N-by-1 vector of technological proximity, which is defined next. 

As we consider the distance effect on interregional patent citations, it is important to 

control for technological proximity between regions, as geographical distance could be just 

proxying for technological proximity. To do this, we use a technological proximity index sij 

that defines the proximity between regions i and j in technology space. We divide the high-
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technology patents into 55 technological subclasses, following the International Patent Code 

classification system. Each region is assigned a 55-by-1-technology vector that measures the 

share of patenting in each of the technological subclasses for a region. The technological 

proximity index sij between regions i and j is given by the uncentred correlation of their  

technological vectors. Two regions that patent exactly in the same proportion in each subclass 

have an index equal to one, while two regions patenting only in different  

subclasses have an index equal to zero. This index is appealing because it allows for a 

continuous measure of technological distance by the transformation 1ij ijd s= − . Appropriate 

ordering leads to the N-by-1 vector (3) .d  

The product ( ) ( )A i B j in Equation (1) may be interpreted simply as the number of distinct     

(i, j)-interactions that are possible. Thus, a reasonable way to measure the origin factor is in 

terms of the number of patents in knowledge producing region i in the time period 1985-1997, 

and the destination factor in terms of the number of patents in knowledge absorbing region j 

in the time period 1990-2002, producing the N-by-1 vectors a and b, respectively. 

 

Application of the Spatial Autoregression Approach 

Table 2 reports the ML estimates of the spatial autoregressive model specification that 

reflects origin and destination spatial dependence of flows. We used the spdep package 

running on a Sun Fire V250 with 1.28 GHz and 8 GB RAM to create the 2 2( )-by-( )n n n n− −  

spatial weights matrix W from polygon contiguities, and the errorsarlm procedure based on 

Ng and Peyton’s (1993) sparse matrix Cholesky algorithm to generate the ML estimates for 

the model. Using this algorithm, computation of the maximum likelihood estimates of the 

spatial econometric model required 836 seconds, a remarkably short time given that the 

estimation approach relies on calculating the determinant of a 12,432-by-12,432 spatial 

weights matrix at each iteration step in the optimisation process9. 
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The table contains the parameter estimates of the spatial autoregressive model 

specification and its associated log-likelihood function value, together with those of the 

conventional log-additive spatial interaction model. Moving from the conventional spatial 

interaction model to the spatial econometric flow model reflecting spatial dependence at the 

origins and destinations increases the log-likelihood from –21,024.13 to –20,212.013. This is 

to be expected, given the significance of the spatial autoregressive parameter that points to 

spatial dependence at origin and destination locations ( ρ̂  = 0.613). Least squares, which 

ignores spatial dependence and assumes residual flows to be independent, produces a much 

lower likelihood function value. Capturing the dependencies greatly reduces the residual 

variance and strengthens the inferential basis affiliated with the model. It is worth noting that 

models based on the use of separate weight matrices Wo  and Wd  have lower log-likelihoods 

than the model based on .W Wo d+  This seems to support the notion that both origin and 

destination dependence information is important10. 

Table 2 about here 

 

The ML estimates display the expected signs, as do the OLS estimates. All the estimated 

coefficients are clearly significant. Maximum likelihood seems to ascribe a greater negative 

influence to geographical distance and national borders in creating friction that inhibits 

knowledge flows. But the two sets of estimates are not significantly different from each other, 

since the estimates of the spatial autoregressive model specification are within the 95 percent 

confidence limits of the least squares estimates. This reinforces the idea that spatial 

autocorrelation, which is commonly being regarded as one particular form of 

heteroscedasticity, does not induce bias in coefficients. 
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Application of the Eigenfunction Spatial Filtering Approach 

Table 2 also shows the parameter estimates from the spatial filter specification of the log-

normal additive spatial interaction model given by Equation (17). A separate spatial filter is 

constructed for the origins and for the destinations. The 27 candidate eigenvectors (those, out 

of a total of 112, whose MI value divided by the maximum MI value is at least 0.25) were 

computed with a FORTRAN program using IMSL routines. 

The selected eigenvectors that collectively maximise the log-likelihood function, together 

with their estimated coefficients and associated levels of spatial autocorrelation, are 

summarised in Table 4. The origin and destination spatial filters for the log-normal additive 

model respectively contain 20 and 21 eigenvectors, and capture moderate positive spatial 

autocorrelation contained in the conventional spatial interaction model residuals. Maps of 

these two spatial filters appear in Figures 1(a) and 1(b). 

The spatial filter model estimates reported in Table 2 are not significantly different from 

the least squares ones. They lie within the 95 percent confidence interval of the least squares 

estimates. It is also the case that they are within the 95 percent confidence interval for the 

spatial autoregressive model estimates and vice-versa. Thus, the spatial filter, the spatial error 

and the least squares model specifications, produce statistically equivalent point estimates. So, 

in accordance with theory, mere spatial dependence in the disturbances does not impact the 

point estimates, but just the precision of the estimates. 

 

Application of the Poisson Model Specifications 

The fat-tailed nature of the distribution of the vectorised flow matrix and the presence of 

numerous zero in the matrix reflecting a lack of interaction between regions in the sample 

raise doubts on the appropriateness of the normality assumption that ignores the true integer 

nature of the flows and approximates a discrete-valued process by an almost certainly 
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misrepresentative continuous distribution. Hence, the Poisson model specifications appear to 

be more appropriate in the current context. 

 

Table 3 about here 

 

Table 4 about here 

 

Table 3 reports the ML estimates of the conventional Poisson model and its spatial  filter 

model specification counterpart that reflects origin-destination spatial dependence of flows. A 

separate spatial filter is constructed for the origins and for the destinations. The 27 candidate 

eigenvectors (those, out of a total of 112, whose MI value divided by the maximum MI value 

is at least 0.25) were computed with a FORTRAN program using IMSL routines, and Poisson 

regression was executed with the SAS PROC GENMOD procedure. 

The selected eigenvectors are summarised in Table 4. The origin and destination spatial 

filters contain 23 and 16 eigenvectors respectively, and capture moderate positive spatial 

autocorrelation contained in the basic Poisson model residuals. Maps of these two spatial 

filters appear in Figures 1(c) and 1(d). Pairwise relationships between these and the origin and 

destination spatial filters for the log-normal additive model (see Figures 1(a) and 1(b)) are 

portrayed in Figure 2. 

 

Figure 1 and Figure 2 about here 

 

Table 3 shows that the 95 percent confidence intervals do not overlap for the coefficient 

estimates for the two Poisson model specifications (except the country border). This suggests 

that explicitly accounting for spatial error autocorrelation in a Poisson context does impact the 
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point estimates and not only the precision of the estimates. It is also the case that the estimates 

of the conventional Poisson model and its spatial filter model specification counterpart are 

significantly different from the least squares estimates. 

Some important differences arise in parameter estimates and inferences that we would 

draw from the conventional and the spatial filter specification of the Poisson spatial 

interaction model. First, accounting for spatial autocorrelation effects in a Poisson setting 

results in the importance of the origin and destination factors decreasing, while a greater 

negative influence is ascribed to geographical and technological distances in creating friction 

that inhibits knowledge flows. Second, MI statistics indicate that spatial autocorrelation 

among residuals is captured, but only modestly. 

Considerable similarities exist between the map patterns captured by each of the four 

spatial filters. The bivariate correlation between the two origin spatial filters is 0.803 (see 

Figure 2), both highlighting a Switzerland-southern France-northern Italy focal region. This 

focus is less conspicuous with the two destination spatial filters, whose correlation is only 

0.593. Both pairs of spatial filters suggest that much of the northern part of continental 

Europe forms a cluster, too. But the log-normal additive model noticeably differs from the 

Poisson model in terms of southern Italy, for both origin and destination spatial filters. 

 

 

6.  SUMMARY AND CONCLUSIONS  
 

Two effective approaches to account for spatial dependence in the disturbances of 

geographic flow models are described and demonstrated. Both approaches give researchers 

tools that aid in the proper specification of spatial interaction models. These approaches are 

somewhat different in the perspective within which each views the problem of spatial 

autocorrelation. 
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The spatial econometric approach is derivative of the literature on spatial autocorrelation 

in a cross-sectional spatial regression context. As such, it expresses spatial autocorrelation 

through the specification of a spatial stochastic process. But while the notion of spatial 

autocorrelation in a conventional spatial regression context involving a sample of n regions 

relies on an n-by-n spatial weights (connectivity) matrix, the notion of spatial autocorrelation 

in a spatial interaction context relies on an N-by-N spatial weights matrix. The spatial weights 

matrix captures origin-based and destination-based dependence relations among the 

observations that influence flows from origins to destinations in a system of n regions. The 

resulting spatial econometric origin-destination flow model is formally equivalent to 

regression models with spatially autocorrelated errors, but differs in terms of the data 

analysed and the manner in which the spatial weights matrix is defined. 

Eigenvector spatial filtering furnishes an alternative methodology that enables spatial 

autocorrelation effects to be captured within a spatial interaction model. This approach makes 

use of the misspecification interpretation of spatial autocorrelation, and shifts attention to 

spatial autocorrelation arising from missing origin and destination factors that is reflected in 

flows between pairs of these locations. In doing so, it allows for spatial interaction models 

where the desire is to avoid especially a log-linear spatial autoregressive specification coupled 

with a log-normally distributed error term, and to employ a generalised linear model 

formulation coupled with a Poisson distributed response variable.  

In conclusion, explicitly accounting for spatial error autocorrelation in a Poisson setting 

results in statistically significant changes in distance decay parameter estimates, and increases 

in parameter estimate standard errors. In a log-normal setting, however, the mere spatial 

dependence in the disturbances does not impact the point estimates, just the precision of the 

estimates. Both the spatial econometric and the spatial filter approach yield estimates that are 

not significantly different from each other and lie within the 95 percent confidence limits of 
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the least squares estimates. This finding is in accordance with econometric theory suggesting 

that spatial error autocorrelation does not lead to bias. 

 

 
ENDNOTES 

 

 
1  Note in some cases yij = 0, indicating the absence of flows from i to j. This leads to the so-called zero problem, 

since the logarithm then is undefined. There are several pragmatic solutions to this problem, with adding a 

small constant to the zero elements of [yij ] being widely used.  Here we added 0.08. 

 

2 This assumption implies that the individual flows, y(i, j), from origin i to destination j are independent from 

each other and that interaction flows between any pairs of regions are independent from flows between any 

other pairs of regions. 

 

3 See LeSage, Fischer and Scherngell (2007) for a Bayesian hierarchical Poisson spatial interaction model that 

includes latent spatial structure effects representing a spatial autoregressive process. 

 

4 Hence, the spatial dependence resides in the disturbance process ,ε  as in the case of serial correlation in time 

series regression models. An alternative way involves modelling a functional relationship between the spatial 

interaction variable y  and its associated spatial lag Wy  rather than directly modelling dependence in the 

errors. LeSage and Pace (2007) adopt this approach that leads to a spatial origin-destination filter specification 

applied to the vector of origin-destination flows and captures three types of possible spatial dependence that 

may occur between origin-destination flows: origin-based, destination-based and origin-to-destination based 

dependence. Estimation relies on the use of moment matrices and a conventional n-by-n spatial weights 

matrix. 

 

5 The definitions of Wo  and Wd  given in Equations (9)-(10) and (11)-(12) lead to dependence structures that 

are equivalent to those considered in LeSage and Pace (2007). 
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6 See Tiefelsdorf and Griffith (2007) for a concise discussion of how a spatial filter model specification 

addresses spatial autocorrelation in residuals arising from missing spatially correlated explanatory variables. 

 

7  Eigenvectors for an n-by-n connectivity matrix can be computed for matrices up to about 10,000 without too 

much difficulty using standard software packages. These eigenvectors are approximate when intraregional 

flows are set aside [i.e., N = n2 becomes N = n(n–1)]. They also result in enormous data set sizes that require 

considerable virtual memory in order for software packages such as SAS to execute, resulting in sizeable CPU 

time requirements. Cressie et al. (1996) suggests some strategies for handling these difficulties. 

 

8  For details about data construction, see Fischer, Scherngell and Jansenberger (2006b). To obtain citations by 

any one patent application in year t, one needs to search the references made by all patent applications after 

year t. This is called the inversion problem that arises because the original data about citations come in the 

form of citations made, whereas we need dyads of cited and citing patents to construct interregional patent 

citations flows. In the case of cross-regional inventor teams, the procedure of multiple full counting has been 

applied (see Fischer, Scherngell and Jansenberger, 2006b for details). 

 

9 Note that Pace and Barry (1997) suggest to compute the sparse Cholesky decomposition once, not on every 

trip through the optimisation loop. This would reduce computational costs by a factor of about 100 (personal 

communication with James LeSage). But this idea is difficult to implement in the context of spdep package 

software. 

 

10  The estimate for the origin-based spatial autocorrelation parameter is 0.311 and that for the destination-based 

counterpart 0.365. 
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TABLE 1: Data Organisation Convention 

Dyad 
Label 

IDorigin IDdestination Flow Origin 
Variable 

Destination 
Variable 

Separation 
(Origin, Destination) 

1 1 1 y(1, 1) a(1) b(1) d(1, 1) 
2 2 1 y(2, 1) a(2) b(1) d(2, 1) 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

n n 1 y(n, 1) a(n) b(1) d(n, 1) 
n+1 1 2 y(1, 2) a(1) b(2) d(1, 2) 
n+2 2 2 y(2, 2) a(2) b(2) d(2, 2) . . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

2n n 2 y(n, 2) a(n) b(2) d(n, 2) 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

(n-1)n 1 n y(1, n) a(1) b(n) d(1, n) 
(n-1)n+1 2 n y(2, n) a(2) b(n) d(2, n) 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
n2=N n n y(n, n) a(n) b(n) d(n, n) 

 
Note that the n cases for which IDorigin=IDdestination are removed in the interregional case where i≠j.



 

 

TABLE 2: Log-Normal Additive Spatial Interaction Models: The Conventional Model, the Spatial Autoregressive Model 
Specification Using ,W  and the Spatial Filter Model Specification with 20 Origin and 21 Destination Eigenvectors 

 The Conventional Log-Normal  
Additive Model [OLS] 

The Spatial Autoregressive  
Model [ML] The Spatial Filter Modeld [OLS] 

 Estimates 
 (Standard Error) 

95% Confidence 
Limits 

Estimates 
 (Standard Error) 

95% Confidence 
Limitsc 

Estimates 
(Standard Error) 

95% Confidence 
Limitse 

Constant 

Origin Variable a 

Destination Variable b 

Geographical Distance 

Country Border 

Technological Distance 

Spatial Autoregressive Parameter 

Origin Spatial Filter 

Destination Spatial Filter 

–4.851 (0.236) 

 0.594 (0.007) 

 0.562 (0.007) 

–0.181 (0.020) 

–0.592 (0.034) 

–2.364 (0.203) 

– 

– 

– 

–5.315 

0.580 

0.548 

–0.220 

–0.658 

–2.763 

– 

– 

– 

–4.388 

0.608 

0.576 

–0.142 

–0.526 

–1.966 

– 

– 

– 

-4.658 (0.320) 

0.593 (0.009) 

0.553 (0.009) 

-0.224 (0.038) 

-0.651 (0.054) 

-2.183 (0.212) 

       0.613 (0.011) 

– 

– 

–5.414 

0.576 

0.536 

–0.296 

–0.754 

–2.586 

0.592 

      – 

      – 

-4.532 

0.610 

0.570 

-0.152 

-0.548 

-1.780 

0.634 

– 

– 

–4.045 (0.249) 

 0.587 (0.008) 

 0.551 (0.008) 

 –0.238 (0.023) 

–0.671 (0.036) 

–2.638 (0.206) 

– 

1 (0.374) 

1 (0.258) 

–4.533 

0.571 

0.534 

–0.283 

–0.742 

–3.041 

 

 0.626 

 0.742 

–3.558 

0.603 

0.567 

–0.193 

–0.600 

–2.235 

 

1.374 

1.258 

Sigma Square 1.724 1.442 1.614 

Pseudo-R2 0.563 0.597 0.719 

Log-likelihood –21,024.128 –20,212.013 –20,591.301 

Moran’s I (p-value) 0.193 (0.000) -0.006 (0.939) 0.145 (0.000) 

Likelihood Ratio Test (p-value) – 

 

1,624.23 (0.000) 

 

– 

 

a measured in terms of patents (1985-1997) in the cited region i; b measured in terms of patents (1990-2002) in the citing region j; c the Hessian analytical 
estimate for the spatial autoregressive model is used to produce standard deviations of the estimates; d pre-test bias associated with stepwise selection of 
eigenvectors for constructing a spatial filter should be minimal here, given that spatial filters are constructed to account for residual spatial autocorrelation 
in a non-parametric context, and eigenvector selection is confirmed with simulation experiments; e because the spatial filters are linear combinations of 
eigenvectors, whose coefficients are estimated within a regression, their standard errors are computed as a linear combination of the squared standard 
errors of the individual eigenvectors  
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TABLE 3: Poisson Spatial Interaction Models: The Conventional Model and the Spatial 

Filter Model Specification with 23 Origin and 16 Destination Eigenvectors in the 
Spatial Filters 

 The Conventional Poisson Model 
[ML] 

The Poisson Spatial Filter Model  
[ML] 

 Estimates 
 (Standard Error) 

95% Confidence 
Limits c 

Estimates 
 (Standard Error) 

95% Confidence 
Limits c 

Constant 

Origin Variable a 

Destination Variable b 

Geographical Distance 

Country Border 

Technological Distance 

Scale 

Origin Spatial Filter 

Destination Spatial Filter 

–8.983 (0.112) 

0.857 (0.006) 

0.835 (0.005) 

–0.258 (0.012) 

–0.364 (0.017) 

–0.584 (0.064) 

1.508 

– 

– 

–9.196 

0.846 

0.826 

–0.281 

–0.396 

–0.706 

 

– 

– 

–8.770 

0.868 

0.845 

–0.235 

–0.332 

–0.462 

 

– 

– 

–7.428 (0.125) 

 0.817 (0.007) 

 0.783 (0.006) 

 –0.583 (0.019) 

–0.330 (0.012) 

–1.553 (0.077) 

1.356 

1 (0.412) 

1 (0.202) 

–7.674 

0.803 

0.771 

–0.619 

–0.353 

–1.703 

 

0.588 

0.798 

–7.183 

0.831 

0.795 

–0.546 

–0.307 

–1.402 

 

1.412 

1.202 

Sigma Square 57.736 34.855 

Pseudo-R2 0.764 0.858 

Log-likelihood 40,919.915 51,973.184 
Moran’s I (p-value) computed for 
Pearson residuals 0.176 (0.000) 

 

0.112 (0.000) 

 

a measured in terms of patents (1985-1997) in the cited region i; b measured in terms of patents (1990-2002) in 
the citing region j; c Wald 95% confidence limits based on the large sample chi-square statistic with one degree 
of freedom, which are standard SAS output for GLMs 
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TABLE 4: Eigenvectors Used to Construct the Origin and the Destination Spatial Filters 

Log-Normal Approximation Poisson Approximation Eigenvector Moran 
Coefficient Origin Destination Origin Destination 

E1 1.11180  1.42741  0.93952  1.6058  1.1994 
E2 1.08506  0.81432  0.46405  1.5152  0.6819 
E3 0.99199 0 0 -0.6757 0 
E4 0.98400 -0.55321 -0.46187 -0.4873 0 
E5 0.93913 -0.74278 -0.32688 -0.5387 0 
E6 0.88555 0 0  0.5759  0.3286 
E7 0.85454  0.48859  0.29019  0.8276  0.2586 
E8 0.81034  1.04167  0.64129  0.9957 0 
E9 0.78716  0.44417 0  0.8188 -0.3755 
E10 0.74424  0.75294  0.28025  1.9399  0.9524 
E11 0.67839 -0.41013 -0.47184 -0.2653 -0.6082 
E12 0.65070 0  0.21490 -0.3584 -0.3663 
E13 0.62828  0.55030  0.30766 0 0 
E14 0.61328 -0.37897 -0.61055 0 -0.5046 
E15 0.56651  0.50432  0.50477 0 0 
E16 0.53836 -0.41588  0.36152 -0.3242  0.2610 
E17 0.51970 -0.37527 0 -0.2258 0 
E18 0.51434  0.51669  0.28619  0.3962 -0.2542 
E19 0.48048  0.91238  0.76615  0.7568  0.4077 
E20 0.44250 -0.34447 0 -0.4618 0 
E21 0.42450 0  0.20912  0.6667  0.5700 
E22 0.39132 0 -0.36015 -0.7781 -0.7835 
E23 0.35404  0.43412 0  1.1175  0.6778 
E24 0.34998 -0.56182 -0.29573 0 0 
E25 0.32231 -0.78679 -0.43436 -0.8296 0 
E26 0.29816 0 -0.28623  0.3795  0.2891 
E27 0.28422 0 -0.24553  0.3501 0 
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FIGURE 1: Spatial Filters for the Patent Citation Data, whose Relative Values are 
Proportional to the Darkness of the Gray Scale and are Constrained to Have 
a Sum of Squares Equal to 1 (Scale: Black – Very High; Dark Gray – High; 
Medium Gray – Medium; Light Gray – Low; White – Very Low). 

(a) Top Left: Log-Linear Additive Model Origin Spatial Filter; Moran 
Coefficient = 0.778, Geary Ratio = 0.331. 

(b) Top Right: Log-Linear Additive Model Destination Spatial Filter; 
Moran Coefficient = 0.731, Geary Ratio = 0.349. 

(c) Bottom Left: Poisson Model Origin Spatial Filter; Moran Coefficient = 
0.781, Geary Ratio = 0.328. 

(d) Bottom Right: Poisson Model Destination Spatial Filter; Moran 
Coefficient = 0.751, Geary Ratio = 0.370 
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FIGURE 2: Scatterplots for Spatial Filter Cross-Correlations. The Corresponding Bivariate 

Correlations Range from 0.529 to 0.835. 

(a) Top Left: Log-Linear Origin (ln_osf) Versus Log-Linear Destination (ln_dsf) 
Spatial Filters (SFs). 

(b) Top Middle: Log-Linear Origin (ln_osf)  Versus Poisson Origin (P_osf) SFs. 

(c) Top Right: Log-Linear Origin (ln_osf)  Versus Poisson Destination (P_dsf) 
SFs. 

(d) Bottom Left: Log-Linear Destination (ln_dsf)  Versus Poisson Origin (P_osf) 
SFs. 

(e) Bottom Middle: Log-Linear Destination (ln_dsf)  Versus Poisson Destination 
(P_dsf) SFs. 

(f) Bottom Right: Poisson Origin (P_osf) Versus Poisson Destination (P_dsf) 
SFs 

 
 


