50,943 research outputs found

    JPEG2000 Image Compression on Solar EUV Images

    Get PDF
    For future solar missions as well as ground-based telescopes, efficient ways to return and process data have become increasingly important. Solar Orbiter, e.g., which is the next ESA/NASA mission to explore the Sun and the heliosphere, is a deep-space mission, which implies a limited telemetry rate that makes efficient onboard data compression a necessity to achieve the mission science goals. Missions like the Solar Dynamics Observatory (SDO) and future ground-based telescopes such as the Daniel K. Inouye Solar Telescope, on the other hand, face the challenge of making petabyte-sized solar data archives accessible to the solar community. New image compression standards address these challenges by implementing efficient and flexible compression algorithms that can be tailored to user requirements. We analyse solar images from the Atmospheric Imaging Assembly (AIA) instrument onboard SDO to study the effect of lossy JPEG2000 (from the Joint Photographic Experts Group 2000) image compression at different bit rates. To assess the quality of compressed images, we use the mean structural similarity (MSSIM) index as well as the widely used peak signal-to-noise ratio (PSNR) as metrics and compare the two in the context of solar EUV images. In addition, we perform tests to validate the scientific use of the lossily compressed images by analysing examples of an on-disk and off-limb coronal-loop oscillation time-series observed by AIA/SDO.Comment: 25 pages, published in Solar Physic

    The correlation energy functional within the GW-RPA approximation: exact forms, approximate forms and challenges

    Full text link
    In principle, the Luttinger-Ward Green's function formalism allows one to compute simultaneously the total energy and the quasiparticle band structure of a many-body electronic system from first principles. We present approximate and exact expressions for the correlation energy within the GW-RPA approximation that are more amenable to computation and allow for developing efficient approximations to the self-energy operator and correlation energy. The exact form is a sum over differences between plasmon and interband energies. The approximate forms are based on summing over screened interband transitions. We also demonstrate that blind extremization of such functionals leads to unphysical results: imposing physical constraints on the allowed solutions (Green's functions) is necessary. Finally, we present some relevant numerical results for atomic systems.Comment: 3 figures and 3 tables, under review at Physical Review

    Orbital Kondo effect in Cobalt-Benzene sandwich molecules

    Full text link
    We study a Co-benzene sandwich molecule bridging the tips of a Cu nanocontact as a realistic model of correlated molecular transport. To this end we employ a recently developed method for calculating the correlated electronic structure and transport properties of nanoscopic conductors. When the molecule is slightly compressed by the tips of the nanocontact the dynamic correlations originating from the strongly interacting Co 3d shell give rise to an orbital Kondo effect while the usual spin Kondo effect is suppressed due to Hund's rule coupling. This non-trivial Kondo effect produces a sharp and temperature-dependent Abrikosov-Suhl resonance in the spectral function at the Fermi level and a corresponding Fano line shape in the low bias conductance

    Predicting the frequencies of diverse exo-planetary systems

    Full text link
    Extrasolar planetary systems range from hot Jupiters out to icy comet belts more distant than Pluto. We explain this diversity in a model where the mass of solids in the primordial circumstellar disk dictates the outcome. The star retains measures of the initial heavy-element (metal) abundance that can be used to map solid masses onto outcomes, and the frequencies of all classes are correctly predicted. The differing dependences on metallicity for forming massive planets and low-mass cometary bodies are also explained. By extrapolation, around two-thirds of stars have enough solids to form Earth-like planets, and a high rate is supported by the first detections of low-mass exo-planets.Comment: 5 pages, 2 figures; accepted by MNRA

    Traveling waves in rotating Rayleigh-Bénard convection: Analysis of modes and mean flow

    Get PDF
    Numerical simulations of the Boussinesq equations with rotation for realistic no-slip boundary conditions and a finite annular domain are presented. These simulations reproduce traveling waves observed experimentally. Traveling waves are studied near threshhold by using the complex Ginzburg-Landau equation (CGLE): a mode analysis enables the CGLE coefficients to be determined. The CGLE coefficients are compared with previous experimental and theoretical results. Mean flows are also computed and found to be more significant as the Prandtl number decreases (from sigma=6.4 to sigma=1). In addition, the mean flow around the outer radius of the annulus appears to be correlated with the mean flow around the inner radius
    • …
    corecore