1,263 research outputs found

    Searches for solar-influenced radioactive decay anomalies using Spacecraft RTGs

    Full text link
    Experiments showing a seasonal variation of the nuclear decay rates of a number of different nuclei, and decay anomalies apparently related to solar flares and solar rotation, have suggested that the Sun may somehow be influencing nuclear decay processes. Recently, Cooper searched for such an effect in 238^{238}Pu nuclei contained in the radioisotope thermoelectric generators (RTGs) on board the Cassini spacecraft. In this paper we modify and extend Cooper's analysis to obtain constraints on anomalous decays of 238^{238}Pu over a wider range of models, but these limits cannot be applied to other nuclei if the anomaly is composition-dependent. We also show that it may require very high sensitivity for terrestrial experiments to discriminate among some models if such a decay anomaly exists, motivating the consideration of future spacecraft experiments which would require less precision.Comment: 8 pages, 4 figures (to appear in Astroparticle Physics

    Constraints on flavor-dependent long range forces from solar neutrinos and KamLAND

    Get PDF
    Flavor-dependent long range (LR) leptonic forces, like those mediated by the LeLμL_e-L_\mu or LeLτL_e -L_\tau gauge bosons, constitute a minimal extension of the standard model that preserves its renormalizability. We study the impact of such interactions on the solar neutrino oscillations when the interaction range RLRR_{LR} is much larger than the Earth-Sun distance. The LR potential can dominate over the standard charged current potential inside the Sun in spite of strong constraints on the coupling α\alpha of the LR force coming from the atmospheric neutrino data and laboratory search for new forces. We demonstrate that the solar and atmospheric neutrino mass scales do not get trivially decoupled even if θ13\theta_{13} is vanishingly small. In addition, for \alpha \gsim 10^{-52} and normal hierarchy, resonant enhancement of θ13\theta_{13} results in nontrivial energy dependent effects on the νe\nu_e survival probability. We perform a complete three generation analysis, and obtain constraints on α\alpha through a global fit to the solar neutrino and KamLAND data. We get the 3σ3\sigma limits αeμ<3.4×1053\alpha_{e\mu} < 3.4 \times 10^{-53} and αeτ<2.5×1053\alpha_{e\tau} < 2.5 \times 10^{-53} when RLRR_{LR} is much smaller than our distance from the galactic center. With larger RLRR_{LR}, the collective LR potential due to all the electrons in the galaxy becomes significant and the constraints on α\alpha become stronger by upto two orders of magnitude.Comment: 25 pages, 7 figure

    Towards the use of the most massive black hole candidates in AGN to test the Kerr paradigm

    Full text link
    The super-massive objects in galactic nuclei are thought to be the Kerr black holes predicted by General Relativity, although a definite proof of their actual nature is still lacking. The most massive objects in AGN (M109MM \sim 10^9 M_\odot) seem to have a high radiative efficiency (η0.4\eta \sim 0.4) and a moderate mass accretion rate (Lbol/LEdd0.3L_{\rm bol}/L_{\rm Edd} \sim 0.3). The high radiative efficiency could suggest they are very rapidly-rotating black holes. The moderate luminosity could indicate that their accretion disk is geometrically thin. If so, these objects could be excellent candidates to test the Kerr black hole hypothesis. An accurate measurement of the radiative efficiency of an individual AGN may probe the geometry of the space-time around the black hole candidate with a precision comparable to the one achievable with future space-based gravitational-wave detectors like LISA. A robust evidence of the existence of a black hole candidate with η>0.32\eta > 0.32 and accreting from a thin disk may be interpreted as an indication of new physics. For the time being, there are several issues to address before using AGN to test the Kerr paradigm, but the approach seems to be promising and capable of providing interesting results before the advent of gravitational wave astronomy.Comment: 12 pages, 6 figures. v2: some typos correcte

    Constraints on Light Pseudoscalars Implied by Tests of the Gravitational Inverse-Square Law

    Get PDF
    The exchange of light pseudoscalars between fermions leads to a spin-independent potential in order g^4, where g is the Yukawa pseudoscalar-fermion coupling constant. This potential gives rise to detectable violations of both the weak equivalence principle (WEP) and the gravitational inverse-square law (ISL), even if g is quite small. We show that when previously derived WEP constraints are combined with those arisingfrom ISL tests, a direct experimental limit on the Yukawa coupling of light pseudoscalars to neutrons can be inferred for the first time (g_n^2/4pi < 1.6 \times 10^-7), along with a new (and significantly improved) limit on the coupling of light pseudoscalars to protons.Comment: 12 pages, Revtex, with 1 Postscript figure (submitted to Physical Review Letters

    Geometric Random Inner Products: A New Family of Tests for Random Number Generators

    Get PDF
    We present a new computational scheme, GRIP (Geometric Random Inner Products), for testing the quality of random number generators. The GRIP formalism utilizes geometric probability techniques to calculate the average scalar products of random vectors generated in geometric objects, such as circles and spheres. We show that these average scalar products define a family of geometric constants which can be used to evaluate the quality of random number generators. We explicitly apply the GRIP tests to several random number generators frequently used in Monte Carlo simulations, and demonstrate a new statistical property for good random number generators

    CC255 Energy Uses in Nebraska Agriculture

    Get PDF
    Campaign Circular 255: This circular includes information about energy uses in Nebraska Agriculture including machine operations, irrigation, crop drying, and electrical energy use in general

    Probing long-range leptonic forces with solar and reactor neutrinos

    Get PDF
    In this work we study the phenomenological consequences of the existence of long-range forces coupled to lepton flavour numbers in solar neutrino oscillations. We study electronic forces mediated by scalar, vector or tensor neutral bosons and analyze their effect on the propagation of solar neutrinos as a function of the force strength and range. Under the assumption of one mass scale dominance, we perform a global analysis of solar and KamLAND neutrino data which depends on the two standard oscillation parameters, \Delta m^2_{21} and \tan^2\theta_{12}, the force coupling constant, its range and, for the case of scalar-mediated interactions, on the neutrino mass scale as well. We find that, generically, the inclusion of the new interaction does not lead to a very statistically significant improvement on the description of the data in the most favored MSW LMA (or LMA-I) region. It does, however, substantially improve the fit in the high-\Delta m^2 LMA (or LMA-II) region which can be allowed for vector and scalar lepto-forces (in this last case if neutrinos are very hierarchical) at 2.5\sigma. Conversely, the analysis allows us to place stringent constraints on the strength versus range of the leptonic interaction.Comment: 20 pages, 8 figure

    Super-soft symmetry energy encountering non-Newtonian gravity in neutron stars

    Full text link
    Considering the non-Newtonian gravity proposed in the grand unification theories, we show that the stability and observed global properties of neutron stars can not rule out the super-soft nuclear symmetry energies at supra-saturation densities. The degree of possible violation of the Inverse-Square-Law of gravity in neutron stars is estimated using an Equation of State (EOS) of neutron-rich nuclear matter consistent with the available terrestrial laboratory data.Comment: Version accepted by Physical Review Letter

    Photon-Neutrino Interactions in Magnetic Field through Neutrino Magnetic Moment

    Get PDF
    We study the neutrino-photon processes like γγννˉ\gamma\gamma\to\nu\bar{\nu} in the presence of uniform external magnetic field for the case when neutrinos can couple to the electromagnetic field directly through their dipole magnetic moment and obtain the stellar energy loss. The process would be of special relevance in astrophysical situations where standard left-handed neutrinos are trapped and the right handed neutrinos produced through the spin flip interaction induced by neutrino magnetic moment alone can freely stream out.Comment: LaTex2e file, 9 page
    corecore