11 research outputs found

    Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder.

    Get PDF
    Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a previously described Atp9a-/- mouse model showed behavioral changes

    Investigation of chromosomal abnormalities and microdeletion/ microduplication(s) in fifty Iranian patients with multiple congenital anomalies

    Get PDF
    Objective: Major birth defects are inborn structural or functional anomalies with long-term disability and adverse impacts on individuals, families, health-care systems, and societies. Approximately 20 of birth defects are due to chromosomal and genetic conditions. Inspired by the fact that neonatal deaths are caused by birth defects in about 20 and 10 of cases in Iran and worldwide respectively, we conducted the present study to unravel the role of chromosome abnormalities, including microdeletion/microduplication(s), in multiple congenital abnormalities in a number of Iranian patients. Materials and Methods: In this descriptive cross-sectional study, 50 sporadic patients with Multiple Congenital Anomalies (MCA) were selected. The techniques employed included conventional karyotyping, fluorescence in situ hybridization (FISH), multiplex ligation-dependent probe amplification (MLPA), and array comparative genomic hybridisation (array-CGH), according to the clinical diagnosis for each patient. Results: Chromosomal abnormalities and microdeletion/microduplication(s) were observed in eight out of fifty patients (16). The abnormalities proved to result from the imbalances in chromosomes 1, 3, 12, and 18 in four of the patients. However, the other four patients were diagnosed to suffer from the known microdeletions of 22q11.21, 16p13.3, 5q35.3, and 7q11.23. Conclusion: In the present study, we report a patient with 46,XY, der(18)12/46,XY, der(18), +mar8 dn presented with MCA associated with hypogammaglobulinemia. Given the patient�s seemingly rare and highly complex chromosomal abnormality and the lack of any concise mechanism presented in the literature to justify the case, we hereby propose a novel mechanism for the formation of both derivative and ring chromosome 18. In addition, we introduce a new 12q abnormality and a novel association of an Xp22.33 duplication with 1q43q44 deletion syndrome. The phenotype analysis of the patients with chromosome abnormality would be beneficial for further phenotype-genotype correlation studies. © 2019 Royan Institute (ACECR). All rights reserved

    Biallelic truncation variants in ATP9A are associated with a novel autosomal recessive neurodevelopmental disorder

    Get PDF
    Intellectual disability (ID) is a highly heterogeneous disorder with hundreds of associated genes. Despite progress in the identification of the genetic causes of ID following the introduction of high-throughput sequencing, about half of affected individuals still remain without a molecular diagnosis. Consanguineous families with affected individuals provide a unique opportunity to identify novel recessive causative genes. In this report, we describe a novel autosomal recessive neurodevelopmental disorder. We identified two consanguineous families with homozygous variants predicted to alter the splicing of ATP9A which encodes a transmembrane lipid flippase of the class II P4-ATPases. The three individuals homozygous for these putatively truncating variants presented with severe ID, motor and speech impairment, and behavioral anomalies. Consistent with a causative role of ATP9A in these patients, a previously described Atp9a�/� mouse model showed behavioral changes. © 2021, The Author(s)

    ANXA1 with Anti-Inflammatory Properties Might Contribute to Parkinsonism

    No full text
    We here describe the identification of a novel variant in the anti-inflammatory Annexin A1 protein likely to be the cause of disease in two siblings with autosomal recessive parkinsonism. The disease-segregating variant was ascertained through a combination of homozygosity mapping and whole genome sequencing and was shown to impair phagocytosis in zebrafish mutant embryos. The highly conserved variant, absent in healthy individuals and public SNP databases, affected a functional domain of the protein with neuroprotective properties. This study supports the hypothesis that damaged microglia might lead to impairments in the clearance of accumulated and aggregated proteins resulting in parkinsonism. ANN NEUROL 2021;90:319�323. © 2021 American Neurological Association

    SNP array-based homozygosity mapping reveals MCPH1 deletion in family with autosomal recessive mental retardation and mild microcephaly

    No full text
    Very little is known about the molecular basis of autosomal recessive MR (ARMR) because in developed countries, small family sizes preclude mapping and identification of the relevant gene defects. We therefore chose to investigate genetic causes of ARMR in large consanguineous Iranian families. This study reports on a family with six mentally retarded members. Array-based homozygosity mapping and high-resolution microarray-based comparative genomic hybridization (array CGH) revealed a deletion of approximately 150-200 kb, encompassing the promoter and the first six exons of the MCPH1 gene, one out of four genes that have been previously implicated in ARMR with microcephaly. Reexamination of affected individuals revealed a high proportion of prematurely condensed chromosomes, which is a hallmark of this condition, but in spite of the severity of the mutation, all patients showed only borderline to mild microcephaly. Therefore the phenotypic spectrum of MCPH1 mutations may be wider than previously assumed, with ARMR being the only consistent clinical finding

    Biallelic variants in NSUN6 cause an autosomal recessive neurodevelopmental disorder.

    No full text
    5-methylcytosine RNA modifications are driven by NSUN methyltransferases. Although variants in NSUN2 and NSUN3 were associated with neurodevelopmental diseases, the physiological role of NSUN6 modifications on transfer RNAs and messenger RNAs remained elusive. We combined exome sequencing of consanguineous families with functional characterization to identify a new neurodevelopmental disorder gene. We identified 3 unrelated consanguineous families with deleterious homozygous variants in NSUN6. Two of these variants are predicted to be loss-of-function. One maps to the first exon and is predicted to lead to the absence of NSUN6 via nonsense-mediated decay, whereas we showed that the other maps to the last exon and encodes a protein that does not fold correctly. Likewise, we demonstrated that the missense variant identified in the third family has lost its enzymatic activity and is unable to bind the methyl donor S-adenosyl-L-methionine. The affected individuals present with developmental delay, intellectual disability, motor delay, and behavioral anomalies. Homozygous ablation of the NSUN6 ortholog in Drosophila led to locomotion and learning impairment. Our data provide evidence that biallelic pathogenic variants in NSUN6 cause one form of autosomal recessive intellectual disability, establishing another link between RNA modification and cognition

    Homozygosity mapping in consanguineous families reveals extreme heterogeneity of non-syndromic autosomal recessive mental retardation and identifies 8 novel gene loci

    No full text
    Autosomal recessive gene defects are arguably the most important, but least studied genetic causes of severe cognitive dysfunction. Homozygosity mapping in 78 consanguineous Iranian families with nonsyndromic autosomal recessive mental retardation (NS-ARMR) has enabled us to determine the chromosomal localization of at least 8 novel gene loci for this condition. Our data suggest that in the Iranian population NS-ARMR is very heterogeneous, and they argue against the existence of frequent gene defects that account for more than a few percent of the cases

    Biallelic loss-of-function variants in the splicing regulator NSRP1 cause a severe neurodevelopmental disorder with spastic cerebral palsy and epilepsy

    No full text
    Purpose: Alternative splicing plays a critical role in mouse neurodevelopment, regulating neurogenesis, cortical lamination, and synaptogenesis, yet few human neurodevelopmental disorders are known to result from pathogenic variation in splicing regulator genes. Nuclear Speckle Splicing Regulator Protein 1 (NSRP1) is a ubiquitously expressed splicing regulator not known to underlie a Mendelian disorder. Methods: Exome sequencing and rare variant family-based genomics was performed as a part of the Baylor-Hopkins Center for Mendelian Genomics Initiative. Additional families were identified via GeneMatcher. Results: We identified six patients from three unrelated families with homozygous loss-of-function variants in NSRP1. Clinical features include developmental delay, epilepsy, variable microcephaly (Z-scores �0.95 to �5.60), hypotonia, and spastic cerebral palsy. Brain abnormalities included simplified gyral pattern, underopercularization, and/or vermian hypoplasia. Molecular analysis identified three pathogenic NSRP1 predicted loss-of-function variant alleles: c.13591362delAAAG (p.Glu455AlafsTer20), c.1272dupG (p.Lys425GlufsTer5), and c.52C>T (p.Gln18Ter). The two frameshift variants result in a premature termination codon in the last exon, and the mutant transcripts are predicted to escape nonsense mediated decay and cause loss of a C-terminal nuclear localization signal required for NSRP1 function. Conclusion: We establish NSRP1 as a gene for a severe autosomal recessive neurodevelopmental disease trait characterized by developmental delay, epilepsy, microcephaly, and spastic cerebral palsy. © 2021, The Author(s), under exclusive licence to the American College of Medical Genetics and Genomics

    Deep sequencing reveals 50 novel genes for recessive cognitive disorders

    No full text
    Common diseases are often complex because they are genetically heterogeneous, with many different genetic defects giving rise to clinically indistinguishable phenotypes. This has been amply documented for early-onset cognitive impairment, or intellectual disability, one of the most complex disorders known and a very important health care problem worldwide. More than 90 different gene defects have been identified for X-chromosome-linked intellectual disability alone, but research into the more frequent autosomal forms of intellectual disability is still in its infancy. To expedite the molecular elucidation of autosomal-recessive intellectual disability, we have now performed homozygosity mapping, exon enrichment and next-generation sequencing in 136 consanguineous families with autosomal-recessive intellectual disability from Iran and elsewhere. This study, the largest published so far, has revealed additional mutations in 23 genes previously implicated in intellectual disability or related neurological disorders, as well as single, probably disease-causing variants in 50 novel candidate genes. Proteins encoded by several of these genes interact directly with products of known intellectual disability genes, and many are involved in fundamental cellular processes such as transcription and translation, cell-cycle control, energy metabolism and fatty-acid synthesis, which seem to be pivotal for normal brain development and function

    A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations

    No full text
    In this study, the role of known Parkinson�s disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families. © 2017, Springer Science+Business Media New York
    corecore