49 research outputs found

    Methods for high-dimensonal analysis of cells dissociated from cyropreserved synovial tissue

    Get PDF
    Background: Detailed molecular analyses of cells from rheumatoid arthritis (RA) synovium hold promise in identifying cellular phenotypes that drive tissue pathology and joint damage. The Accelerating Medicines Partnership RA/SLE Network aims to deconstruct autoimmune pathology by examining cells within target tissues through multiple high-dimensional assays. Robust standardized protocols need to be developed before cellular phenotypes at a single cell level can be effectively compared across patient samples. Methods: Multiple clinical sites collected cryopreserved synovial tissue fragments from arthroplasty and synovial biopsy in a 10% DMSO solution. Mechanical and enzymatic dissociation parameters were optimized for viable cell extraction and surface protein preservation for cell sorting and mass cytometry, as well as for reproducibility in RNA sequencing (RNA-seq). Cryopreserved synovial samples were collectively analyzed at a central processing site by a custom-designed and validated 35-marker mass cytometry panel. In parallel, each sample was flow sorted into fibroblast, T-cell, B-cell, and macrophage suspensions for bulk population RNA-seq and plate-based single-cell CEL-Seq2 RNA-seq. Results: Upon dissociation, cryopreserved synovial tissue fragments yielded a high frequency of viable cells, comparable to samples undergoing immediate processing. Optimization of synovial tissue dissociation across six clinical collection sites with ~ 30 arthroplasty and ~ 20 biopsy samples yielded a consensus digestion protocol using 100 μg/ml of Liberase™ TL enzyme preparation. This protocol yielded immune and stromal cell lineages with preserved surface markers and minimized variability across replicate RNA-seq transcriptomes. Mass cytometry analysis of cells from cryopreserved synovium distinguished diverse fibroblast phenotypes, distinct populations of memory B cells and antibody-secreting cells, and multiple CD4+ and CD8+ T-cell activation states. Bulk RNA-seq of sorted cell populations demonstrated robust separation of synovial lymphocytes, fibroblasts, and macrophages. Single-cell RNA-seq produced transcriptomes of over 1000 genes/cell, including transcripts encoding characteristic lineage markers identified. Conclusions: We have established a robust protocol to acquire viable cells from cryopreserved synovial tissue with intact transcriptomes and cell surface phenotypes. A centralized pipeline to generate multiple high-dimensional analyses of synovial tissue samples collected across a collaborative network was developed. Integrated analysis of such datasets from large patient cohorts may help define molecular heterogeneity within RA pathology and identify new therapeutic targets and biomarkers

    Fibromyalgia

    No full text

    Suppression of murine collagen-induced arthritis by targeted apoptosis of synovial neovasculature

    Get PDF
    Because angiogenesis plays a major role in the perpetuation of inflammatory arthritis, we explored a method for selectively targeting and destroying new synovial blood vessels. Mice with collagen-induced arthritis were injected intravenously with phage expressing an RGD motif. In addition, the RGD peptide (RGD-4C) was covalently linked to a proapoptotic heptapeptide dimer, D(KLAKLAK)2, and was systemically administered to mice with collagen-induced arthritis. A phage displaying an RGD-containing cyclic peptide (RGD-4C) that binds selectively to the alpha(v)beta3 and alpha(v)beta5 integrins accumulated in inflamed synovium but not in normal synovium. Homing of RGD-4C phage to inflamed synovium was inhibited by co-administration of soluble RGD-4C. Intravenous injections of the RGD-4C-D(KLAKLAK)2 chimeric peptide significantly decreased clinical arthritis and increased apoptosis of synovial blood vessels, whereas treatment with vehicle or uncoupled mixture of the RGD-4C and the untargeted proapoptotic peptide had no effect. Targeted apoptosis of synovial neovasculature can induce apoptosis and suppress clinical arthritis. This form of therapy has potential utility in the treatment of inflammatory arthriti

    Regulation of peripheral inflammation by spinal p38 MAP kinase in rats

    No full text
    10.1371/journal.pmed.0030338PLoS Medicine391616-162

    An orally bioavailable synthetic analog of an active dehydroepiandrosterone metabolite reduces established disease in rodent models of rheumatoid arthritis.

    No full text
    Dehydroepiandrosterone (DHEA) treatment provides diverse anti-inflammatory benefits in rodent models of diseases, including rheumatoid arthritis (RA), but only limited benefits to patients. In rodents, DHEA is metabolized to (among others) androstene-3beta,7beta,17beta-triol (AET), which retains potent anti-inflammatory activity. 17Alpha-ethynyl-5-androstene-3beta,7beta,17beta-triol (HE3286) is a novel, metabolically stabilized, orally bioavailable derivative of AET. In the DBA mouse model of collagen-induced arthritis (CIA), once-daily oral treatments (gavage) with HE3286 (40 mg/kg), beginning at onset of disease, significantly decreased disease. Benefit was associated with reduction in joint inflammation, erosion, and synovial proliferation as measured by histological analysis and mRNA of proinflammatory cytokines, including tumor necrosis factor-alpha, interleukin (IL)-6, IL-1beta, and IL-23. Significant benefit was also observed in the CIA model even when treatments were delayed until 7 days after the onset of arthritis. Furthermore, dose-dependent benefit was observed in the DBA mouse model of collagen antibody-induced arthritis, as well as reductions in IL-6 and matrix metalloproteinase-3 mRNA levels in joints at the peak of disease and at the end of the study. HE3286, in contrast to dexamethasone, was not immune-suppressive in several classic animal models of immune function. Instead, HE3286 treatment was associated with reduced nuclear factor-kappaB activation and in our previous studies, with increased regulatory T cells. We hypothesize that HE3286 may represent a novel, perhaps first-in-class, anti-inflammatory agent and may more fully translate the benefits of DHEA, heretofore largely limited to rodents, into treatments for human diseases, including autoimmune disorders such as RA
    corecore