1,803 research outputs found

    Regolith history from cosmic-ray-produced isotopes

    Get PDF
    A statistical model is given for soil development relating meteoroid impacts on the moon to cosmic-ray-produced isotopes in the soil. By means of this model, the average lunar mass loss rate during the past 1.4 aeons is determined to be 170g/sq cm aeon and the soil mixing rate to be approximately 200 cm/aeon from the gadolinium isotope data for the Apollo 15 and 16 drill stems. The isotope data also restrict the time variation of the meteoroid flux during the past 1.4 aeons

    Radioactivities in returned lunar materials

    Get PDF
    Results from a carbon-14 study in size fractions of lunar soil are reported. The 10 to 30 micrometers and 74 to 124 micrometers size fraction results were supplemented by 30 to 37 micrometers results that are given in this report. The gases from the less than 10 micrometers fraction were extracted and purified and carbon-14 counting is now in progress. Meteorites were also studied using carbon-14, with emphasis directed to those recently discovered in the Antarctic

    Radioactivities in returned lunar materials and in meteorites

    Get PDF
    Carbon 14 terrestial ages were determined with low level minicomputers and accelerator mass spectrometry on 1 Yamato and 18 Allan Hills and nearby sited meteorites. Techniques for an accelerator mass spectrometer which make C(14) measurements on small samples were developed. Also Be(10) concentrations were measured in Byrd core and Allan Hills ice samples

    Radioactivities in returned lunar materials and in meteorites

    Get PDF
    Carbon-14 measurements were made for meteorites with a Van der Graaf accelerator. Accelerator C-14 dating improved the precision by a factor of ten, allowed the use of smaller sample sizes, and gave speedier results than C-14 dating with counters. A methodology for determining the terrestrial ages of several antarctic meteorites is described and the results are listed

    Titanium spallation cross sections between 30 and 584 MeV and Ar-39 activities on the moon

    Get PDF
    The production cross sections of Ar39 for Ti spallation at 45-, 319-, 433-, and 584-MeV proton energies were measured to be 0.37 + or - 0.09, 12.4 + or - 3.7, 9.1 + or - 2.7, and 17.8 + or - 6.2 mb, respectively. Normalized Ar39 production rates and activities are also derived for protons above 40 MeV and for three differential proton spectra of the type approximately E(- alpha). It is concluded that, even for samples of high-Ti content, Ti spallation by solar protons below 200-MeV energy does not contribute significantly to their Ar39 radioactivity

    The stopping rate of negative cosmic-ray muons near sea level

    Get PDF
    A production rate of 0.065 + or - 0.003 Ar-37 atom/kg min of K-39 at 2-mwe depth below sea level was measured by sweeping argon from potassium solutions. This rate is unaffected by surrounding the solution by paraffin and is attributed to negative muon captures and the electromagnetic interaction of fast muons, and not to nucleonic cosmic ray component. The Ar-37 yield from K-39 by the stopping of negative muons in a muon beam of a synchrocyclotron was measured to be 8.5 + or - 1.7%. The stopping rate of negative cosmic ray muons at 2-mwe depth below sea level from these measurements and an estimated 17% electromagnetic production is 0.63 + or - 0.13 muon(-)/kg min. Previous measurements on the muon stopping rate vary by a factor of 5. Our value is slightly higher but is consistent with two previous high values. The sensitivity of the Ar-37 radiochemical method for the detection of muons is considerably higher than that of the previous radiochemical methods and could be used to measure the negative muon capture rates at greater depths

    Surface plasmon and photonic mode propagation in gold nanotubes with varying wall thickness

    Get PDF
    Gold nanotube arrays are synthesized with a range of wall thicknesses (15 to >140 nm) and inner diameters of ∼200 nm using a hard-template method. A red spectral shift (>0.39 eV) with decreasing wall thickness is observed in dark-field spectra of nanotube arrays and single nanowire/nanotube heterostructures. Finite-difference-time-domain simulations show that nanotubes in this size regime support propagating surface plasmon modes as well as surface plasmon ring resonances at visible wavelengths (the latter is observed only for excitation directions normal to the nanotube long axis with transverse polarization). The energy of the surface plasmon modes decreases with decreasing wall thickness and is attributed to an increase in mode coupling between propagating modes in the nanotube core and outer surface and the circumference dependence of ring resonances. Surface plasmon mode propagation lengths for thicker-walled tubes increase by a factor of ∼2 at longer wavelengths (>700 nm), where ohmic losses in the metal are low, but thinner-walled tubes (30 nm) exhibit a more significant increase in surface plasmon propagation length (by a factor of more than four) at longer wavelengths. Additionally, nanotubes in this size regime support a photonic mode in their core, which does not change in energy with changing wall thickness. However, photonic mode propagation length is found to decrease for optically thin walls. Finally, correlations are made between the experimentally observed changes in dark-field spectra and the changes in surface plasmon mode properties observed in simulations for the various gold nanotube wall thicknesses and excitation conditions

    If you’d do anything to avoid meetings, you may be missing the point

    Get PDF
    As boring as they are, meetings allow us to read company culture, argues Ken Firema

    Does flopping have an upside? Business rethinks the meaning of failure

    Get PDF
    Once a stigma, it’s now even a badge of honor, writes Ken Firema
    • …
    corecore