19 research outputs found

    Comparison Of Critical Rate Correlations

    Get PDF
    Water coning is a term used to describe the upward movement of water into the perforations of a producing well. This phenomenon can also be described as a steady and usually sharp displacement of some or all the oil production by the bottom water when the critical withdrawal rate from the well is exceeded

    Development of New Amphiphilic Catalytic Steam Additives for Hydrothermal Enhanced Oil Recovery Techniques

    No full text
    In this paper, we propose the synthesis of green amphiphilic catalysts based on two metals: Ni and Al. The amphiphilic characteristics of the obtained catalyst were provided by alkylbenzenesulfonic acid (ABSA). The end product was thoroughly characterized by the FTIR analysis method. The efficiency of both catalysts was tested by modeling the catalytic hydrothermal upgrading of heavy-oil samples from Ashal’cha field (Russia) in a high-pressure/high-temperature (HP/HT) reactor with a stirrer at a temperature of 250 °C. The physical and chemical properties of the heavy oils and their fractions were studied before and after the catalytic hydrothermal upgrading by analytical procedures such as SARA analysis, FTIR spectroscopy, GC–MS, elemental analysis, gas chromatography, etc. The results showed that both catalysts had a different influence on the viscosity-reduction degree. It was revealed that the contribution of Al ABSA to the viscosity reduction was the highest: more than 80% in contrast to the initial crude oil sample. The Al-based catalyst showed the best activity in hydrogenation and decarbonization, and hence the H/C ratio of the upgraded oil was at a maximum in the presence of Al ABSA

    Comparison Of Critical Rate Correlations

    No full text
    Water coning is a term used to describe the upward movement of water into the perforations of a producing well. This phenomenon can also be described as a steady and usually sharp displacement of some or all the oil production by the bottom water when the critical withdrawal rate from the well is exceeded

    Pyrolysis of Amaranth Inflorescence Wastes: Bioenergy Potential, Biochar and Hydrocarbon Rich Bio-Oil Production

    No full text
    Many agro-industrial companies grow amaranth for the subsequent production of amaranth oil, flour, cereals, flakes, and bran. After the grain is extracted, waste in the form of inflorescences remains, which can be used to obtain useful new products. This work investigated the use of pyrolysis to recycle amaranth inflorescence wastes (AIW). Thermochemical conversion experiments in an inert medium were carried out in a laboratory setup at 550 °C and a heating rate of 10 °C/min. It was found that the AIW pyrolysis produced 37.1 wt.% bio-oil, 35.8 wt.% pyrogas and 27.1 wt.% biochar. The oil fraction of the obtained bio-oil contains 41.8% of hydrocarbons. Thermogravimetric analysis of AIW was performed in the temperature range from 40 to 1000 °C at heating rates of 10, 15, and 20 °C/min in argon medium (75 mL/min). The kinetic parameters were determined by the model-free Friedman, Ozawa-Flynn-Wall, and Kissinger-Akahira-Sunose methods. The average activation energy values are in the range of 208.44–216.17 kJ/mol, and they were used to calculate the thermodynamic parameters. The results indicate that the pyrolysis application will allow efficient conversion of AIW into value-added products

    Corrosion of indium doped E-AlMgSi aluminum conductor alloy (Aldrey)

    Get PDF
    The effect of impurities on the electrical conductivity of aluminum has been studied in detail. The electrical conductivity of aluminum is 65.45% of that of copper. The tensile strength of aluminum wire is 150–170 MPa which, at equal conductivity, is about 65% of the strength of copper wire. This strength of aluminum wire is sufficient for bearing the wire’s own weight but may be too low in case of snow, ice or wind overloads. One way to improve the strength of aluminum wire is to use aluminum alloys having higher strength combined with sufficiently high electrical conductivity, e.g. the E-AlMgSi alloy (Aldrey). The key strengthening agent of the E-AlMgSi alloy (Aldrey) is the Mg2Si phase which imparts high mechanical strength to aluminum. In this work we present experimental data on the kinetics of high-temperature oxidation and electrochemical corrosion of indium doped E-AlMgSi aluminum conductor alloy (Aldrey). Thermal gravimetric study has shown that indium doping and high temperature exposure increase the oxidation rate of E-AlMgSi alloy (Aldrey), with the apparent alloy oxidation activation energy decreasing from 120.5 to 91.8 kJ/mole. Alloy oxidation rate data determined using a potentiostatic technique in NaCl electrolyte media have shown that the corrosion resistance of the indium doped alloy is 20–30% superior to that of the initial alloy. With an increase in NaCl electrolyte concentration the electrochemical potentials of the alloys decrease whereas the corrosion rate increases regardless of alloy composition

    Corrosion and electrohemical behavior of aluminum conductor E-AlMgSi (Aldrey) alloy with tin in a medium electrolite NaCl

    No full text
    The economic feasibility of using aluminum as a conductive material is explained by the favorable ratio of its cost to the cost of copper. In addition, one should take into account the factor that the cost of aluminum has remained virtually unchanged for many years. When using conductive aluminum alloys for the manufacture of thin wire, winding wire, etc. Certain difficulties may arise in connection with their insufficient strength and a small number of kinks before fracture. In recent years, aluminum alloys have been developed, which even in a soft state have strength characteristics that allow them to be used as a conductive material. One of the promising areas for the use of aluminum is the electrical industry. Conducting aluminum alloys type of the E-AlMgSi (Aldrey) are representatives of this group of alloys and belong to heat-strengthened alloys. They are distinct by high strength and good ductility. These alloys, with appropriate heat treatment, acquire high electrical conductivity. The producing made from it are used almost exclusively for overhead power lines. The paper presents the results of a study of the anodic behavior of aluminum E-AlMgSi (Aldrey) alloy with tin in a medium electrolyte of 0.03; 0.3 and 3.0% NaCl. Corrosion-electrochemical studies of the alloys were carried out by the potentiostatic method in potentiostat PI-50-1.1 at a potential sweep speed of 2 mV/s. It is shown that alloying E-AlMgSi (Aldrey) alloy with tin increases its corrosion resistance by 20%. The main electrochemical potentials of the E-AlMgSi (Aldrey) alloy, when doped with tin, shift to a positive range of values, and from the concentration of sodium chloride in the negative direction of the ordinate

    Pyrolysis of Amaranth Inflorescence Wastes: Bioenergy Potential, Biochar and Hydrocarbon Rich Bio-Oil Production

    No full text
    Many agro-industrial companies grow amaranth for the subsequent production of amaranth oil, flour, cereals, flakes, and bran. After the grain is extracted, waste in the form of inflorescences remains, which can be used to obtain useful new products. This work investigated the use of pyrolysis to recycle amaranth inflorescence wastes (AIW). Thermochemical conversion experiments in an inert medium were carried out in a laboratory setup at 550 °C and a heating rate of 10 °C/min. It was found that the AIW pyrolysis produced 37.1 wt.% bio-oil, 35.8 wt.% pyrogas and 27.1 wt.% biochar. The oil fraction of the obtained bio-oil contains 41.8% of hydrocarbons. Thermogravimetric analysis of AIW was performed in the temperature range from 40 to 1000 °C at heating rates of 10, 15, and 20 °C/min in argon medium (75 mL/min). The kinetic parameters were determined by the model-free Friedman, Ozawa-Flynn-Wall, and Kissinger-Akahira-Sunose methods. The average activation energy values are in the range of 208.44–216.17 kJ/mol, and they were used to calculate the thermodynamic parameters. The results indicate that the pyrolysis application will allow efficient conversion of AIW into value-added products

    Heat capacity and thermodynamic functions of E-AlMgSi (Aldrey) aluminum conductor alloy doped with gallium

    No full text
    Aluminum is a metal having permanently broadening applications. Currently aluminum and its alloys successfully replace conventional metals and alloys in a number of application fields. The wide use of aluminum and its alloys is primarily stipulated by its advantageous properties e.g. low density, high corrosion resistance and electrical conductivity as well as the possibility of applying protective and decorative coatings. In combination with great abundance and relatively low cost which has been almost constant in recent years, this permanently broadens the application range of aluminum. The electrochemical industry is one of the promising application fields of aluminum. The E-AlMgSi type (Aldrey) conductor aluminum alloy has high strength and ductility. This alloy acquires high electrical conductivity upon appropriate heat treatment. Products made from it are used almost exclusively for overhead power lines. This work presents data on the temperature dependence of heat capacity, heat conductivity and thermodynamic functions of the E-AlMgSi (Aldrey) aluminum alloy doped with gallium. The studies have been carried out in "cooling" mode. It has been shown that with an increase in temperature the heat capacity and thermodynamic functions of E-AlMgSi (Aldrey) alloy doped with gallium increase while the Gibbs energy decreases. Gallium doping to 1 wt.% reduces the heat capacity, enthalpy and entropy of the initial alloy and increases the Gibbs energy

    Enhanced Oil Recovery by In-Reservoir Hydrogenation of Carbon Dioxide Using Na-Fe<sub>3</sub>O<sub>4</sub>

    No full text
    In-situ conversion of carbon dioxide into value-added products is an essential process in terms of heavy oil upgrading and utilization of the main anthropogenic greenhouse gas. In this paper, we discuss a synthesis of sodium-coated magnetite (Fe3O4) particles for in-reservoir hydrogenation of CO2. The performance of the obtained catalyst was tested in upgrading of heavy oil in a High Pressure/High Temperature (HPHT) reactor imitating the reservoir conditions during steam injection techniques. The experiments were conducted for 48 h in a CO2 environment under the steam temperature and pressure of 250 °C and 90 bar, respectively. The results showed irreversible viscosity reduction of oil from 3931 mPa.s to 2432 mPa.s after the degassing of unreacted carbon dioxide. The content of resins in the composition of upgraded oil was significantly altered from 32.1 wt% to 19.01 wt%, while the content of aromatics rose from 32.5 wt% to 48.85 wt%. The GC-MS results show the presence of alkyl benzenes and phenanthrenes, which were initially concentrated in resins and asphaltenes, in the aromatics fraction of upgraded crude oil. Thus, Na-Fe3O4 exhibits promising results for in-situ heavy oil upgrading through the hydrogenation of carbon dioxide, which contributes not only to the reduction of greenhouse gas emissions, but also enhances heavy oil recovery

    Composition of Oil after Hydrothermal Treatment of Cabonate-Siliceous and Carbonate Domanic Shale Rocks

    No full text
    The hydrocarbon compositions of shale oils, generated from two different lithological–facial Domanic deposits of the Tatarstan Republic (Russia), were studied under hydrothermal impact with 30% of water addition in a 350 °С and CO2 environment. The samples were extracted from carbonate–siliceous rocks of the Semiluky–Mendym deposits of the Berezovskaya area, and carbonate deposits of the Dankovo–Lebedyan horizon of the Zelenogorskaya area of the Romashkino oil field. The distinctive features of rocks are in the composition and content of organic matter (OM), its thermal stability, as well as the structural-group composition of the shale oil products. The hydrothermal treatment of the rock samples increased the content of saturates and decreased the content of aromatics, resins and asphaltenes in the composition of crude oil. The decomposition of the polymer-like kerogen structure and destruction processes of high-molecular compounds, such as resins and asphaltenes, are accompanied with the formation of substances highly rich in carbons—carbenes and carboids. The contents of n-alkanes and acyclic isoprenoids increase in the composition of saturated hydrocarbons. According to the chemical classification of Al. A. Petrov, the character of the molecular mass distribution of such substances corresponds to oil type A1, which is considered paraffinic. The contents of dibenzothiophene, naphthalene and phenanthrene are increased in the composition of aromatic hydrocarbons, while the contents of tri-methyl-alkyl-benzene and benzothiophene are decreased. The increase in the aryl isoprenoid ratio (AIR = С13–С17/С18–С22) and maturity parameter (4-MDBT/1-MDBT) under the influences of hydrothermal factors indicates the increasing thermal maturity degree of the hydrocarbon system. The differences in the distribution behavior of saturated and aromatic hydrocarbons—biomarkers in rocks of various lithological-facies types, which are reasoned by different conditions of initial organic matter transformation as well as under the impact of hydrothermal factors—were revealed
    corecore