720 research outputs found

    Multiport Impedance Quantization

    Get PDF
    With the increase of complexity and coherence of superconducting systems made using the principles of circuit quantum electrodynamics, more accurate methods are needed for the characterization, analysis and optimization of these quantum processors. Here we introduce a new method of modelling that can be applied to superconducting structures involving multiple Josephson junctions, high-Q superconducting cavities, external ports, and voltage sources. Our technique, an extension of our previous work on single-port structures [1], permits the derivation of system Hamiltonians that are capable of representing every feature of the physical system over a wide frequency band and the computation of T1 times for qubits. We begin with a black box model of the linear and passive part of the system. Its response is given by its multiport impedance function Zsim(w), which can be obtained using a finite-element electormagnetics simulator. The ports of this black box are defined by the terminal pairs of Josephson junctions, voltage sources, and 50 Ohm connectors to high-frequency lines. We fit Zsim(w) to a positive-real (PR) multiport impedance matrix Z(s), a function of the complex Laplace variable s. We then use state-space techniques to synthesize a finite electric circuit admitting exactly the same impedance Z(s) across its ports; the PR property ensures the existence of this finite physical circuit. We compare the performance of state-space algorithms to classical frequency domain methods, justifying their superiority in numerical stability. The Hamiltonian of the multiport model circuit is obtained by using existing lumped element circuit quantization formalisms [2, 3]. Due to the presence of ideal transformers in the model circuit, these quantization methods must be extended, requiring the introduction of an extension of the Kirchhoff voltage and current laws

    Blackbox Quantization of Superconducting Circuits using exact Impedance Synthesis

    Full text link
    We propose a new quantization method for superconducting electronic circuits involving a Josephson junction device coupled to a linear microwave environment. The method is based on an exact impedance synthesis of the microwave environment considered as a blackbox with impedance function Z(s). The synthesized circuit captures dissipative dynamics of the system with resistors coupled to the reactive part of the circuit in a non-trivial way. We quantize the circuit and compute relaxation rates following previous formalisms for lumped element circuit quantization. Up to the errors in the fit our method gives an exact description of the system and its losses

    Multi-qubit parity measurement in circuit quantum electrodynamics

    Get PDF
    We present a concept for performing direct parity measurements on three or more qubits in microwave structures with superconducting resonators coupled to Josephson-junction qubits. We write the quantum-eraser conditions that must be fulfilled for the parity measurements as requirements for the scattering phase shift of our microwave structure. We show that these conditions can be fulfilled with present-day devices. We present one particular scheme, implemented with two-dimensional cavity techniques, in which each qubit should be coupled equally to two different microwave cavities. The magnitudes of the couplings that are needed are in the range that has been achieved in current experiments. A quantum calculation indicates that the measurement is optimal if the scattering signal can be measured with near single photon sensitivity. A comparison with an extension of a related proposal from cavity optics is presented. We present a second scheme, for which a scalable implementation of the four-qubit parities of the surface quantum error correction code can be envisioned. It uses three-dimensional cavity structures, using cavity symmetries to achieve the necessary multiple resonant modes within a single resonant structure

    Phase diagrams of Kitaev models for arbitrary magnetic field orientations

    Get PDF
    The Kitaev model is an exactly solvable quantum spin model within the language of constrained real fermions. In spite of numerous studies for magnetic fields along special orientations, there is a limited amount of knowledge on the complete field-angle characterization, which can provide valuable information on the existence of fractionalized excitations. For this purpose, we first study the pure ferromagnetic and antiferromagnetic Kitaev models for arbitrary external magnetic field directions via a mean-field theory, showing that there are many topological phases with different (or zero) Chern numbers, depending on the magnetic field strength and orientations. However, a realistic description of the candidate Kitaev materials, within the edge-sharing octahedra paradigm, requires additional coupling terms, including a large off-diagonal term Γ along with possible anisotropic corrections Γp. It is therefore not sufficient to rely on the topological properties of the bare Kitaev model as the basis for the observed thermal Hall-conductivity signals, and an understanding of these extended Kitaev models with a complete field response is demanded. Starting from the zero-field phase diagram of K−Γ−Γp models, we identify, besides the Kitaev spin liquid phase, antiferromagnetic zigzag, ferromagnetic phases, as well as an unusual Kitaev(-Γ) spin liquid phase. The magnetic field response of these phases for arbitrary field orientations provides a remarkably rich phase diagram. For an extended parameter range and just above the critical field where the zigzag phase is suppressed, there is an intermediate phase region with suppressed energy gaps and substantial spin fractionalization. To comply our findings with experiments, we also reproduce a large asymmetry in the extent of this intermediate phases specifically for the two different field directions θ=±60o with respect to the normal to the plane of the honeycomb lattice

    Fatigue analysis-based numerical design of stamping tools made of cast iron

    Get PDF
    This work concerns stress and fatigue analysis of stamping tools made of cast iron with an essentially pearlitic matrix and containing foundry defects. Our approach consists at first, in coupling the stamping numerical processing simulations and structure analysis in order to improve the tool stiffness geometry for minimizing the stress state and optimizing their fatigue lifetime. The method consists in simulating the stamping process by considering the tool as a perfect rigid body. The estimated contact pressure is then used as boundary condition for FEM structure loading analysis of the tool. The result of this analysis is compared with the critical stress limit depending on the automotive model. The acceptance of this test allows calculating the fatigue lifetime of the critical zone by using the S–N curve of corresponding load ratio. If the prescribed tool life requirements are not satisfied, then the critical region of the tool is redesigned and the whole simulation procedures are reactivated. This method is applied for a cast iron EN-GJS-600-3. The stress-failure (S–N) curves for this material is determined at room temperature under push pull loading with different load ratios R0σmin/σmax0−2, R0−1 and R00.1. The effects of the foundry defects are determined by SEM observations of crack initiation sites. Their presence in tested specimens is associated with a reduction of fatigue lifetime by a factor of 2. However, the effect of the load ratio is more important

    In vivo study of the GC90/IRIV vaccine for immune response and autoimmunity into a novel humanised transgenic mouse

    Get PDF
    Parathyroid hormone-related protein (PTH-rP), a secreted protein produced by prostate carcinoma and other epithelial cancers, is considered a key agent for the development of bone metastases. We investigated the construct GC90/IRIV, composed of immunopotentiating reconstituted influenza virosomes (IRIV) containing PTH-rP gene plasmids (GC90), as a potential tool for human anticancer immunotherapy into humanised mice transgenic for HLA-A(*)02.01, the human-β2 microglobulin, and the human CD8α molecule. Intranasal administration of GC90/IRIV resulted in the induction of a PTH-rP-specific multiepitope cytotoxic T-cell (CTL) response. Cytotoxic T cells derived from vaccinated mice were capable of lysing in vitro syngenic murine PTH-rP transfectants and human HLA-A(*)02.01+/PTH-rP+ prostate carcinoma LNCaP cells as well. The immune response capacity and the absence of any sign of toxicity and/or autoimmunity in vivo suggest the GC90/IRIV vaccine as a valid tool for active specific immunotherapy of human cancers and metastases overexpressing PTH-rP
    • …
    corecore