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Germany
2 Institute for Quantum Information, RWTH Aachen, Germany
3 Jülich-Aachen Research Alliance (JARA), Fundamentals of Future
Information Technologies, Germany
E-mail: d.divincenzo@fz-juelich.de and firat.solgun@gmail.com

New Journal of Physics 15 (2013) 075001 (18pp)
Received 16 November 2012
Published 2 July 2013
Online at http://www.njp.org/
doi:10.1088/1367-2630/15/7/075001

Abstract. We present a concept for performing direct parity measurements on
three or more qubits in microwave structures with superconducting resonators
coupled to Josephson-junction qubits. We write the quantum-eraser conditions
that must be fulfilled for the parity measurements as requirements for the
scattering phase shift of our microwave structure. We show that these conditions
can be fulfilled with present-day devices. We present one particular scheme,
implemented with two-dimensional cavity techniques, in which each qubit
should be coupled equally to two different microwave cavities. The magnitudes
of the couplings that are needed are in the range that has been achieved in current
experiments. A quantum calculation indicates that the measurement is optimal
if the scattering signal can be measured with near single-photon sensitivity.
A comparison with an extension of a related proposal from cavity optics is
presented. We present a second scheme, for which a scalable implementation
of the four-qubit parities of the surface quantum error correction code can be
envisioned. It uses three-dimensional cavity structures, using cavity symmetries
to achieve the necessary multiple resonant modes within a single resonant
structure.
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1. Introduction

The essence of error correcting either quantum or classical information is parity checking. In
all practical quantum error correction codes [1], the error-free state is signaled by parities of
a selection of subsets of qubits all being ‘even’; conversely, the occurrence of ‘odd’ parities
indicates a non-trivial error syndrome, with which the particular form of error can be diagnosed.
Calculations show that remarkably simple codes are very effective as the substrate of fault
tolerant quantum computation; the subsets subjected to parity checks are geometrically local
on a two-dimensional (2D) lattice. In addition, the weight of the parity checks is low; for the
canonical code of this class, the Kitaev toric code [2], the weights of all checks are four.

It has been standard to assume that a qubit parity should be obtained by computation,
in particular by a series of two-qubit quantum logic gates. Thus for the weight-four case, the
circuit involves four controlled-NOT gates from each of the four qubits in succession to a fifth,
ancilla qubit. The ancilla then holds the value of the parity (or is, perhaps, in an entangled
superposition of the two different parity states), so that a measurement of the ancilla reveals
(or fixes) this parity. In this paper, we show that, by use of standard microwave scattering
techniques, the parity of a small subset of qubits may be measured directly, without the need of
an intermediate calculation requiring a logic circuit. We hope that this will simplify the process
of error correction, and improve thereby its error robustness.

We first discuss some features of the parity determination that are of a particularly
quantum-mechanical character. Firstly, it cannot be trivially assumed that after a quantum
measurement records some value, the state of the quantum object necessarily still has that value.
For example, if a polarization-sensitive photodetector ‘clicks’ to indicate the polarization of
the photon, the photon possessing that polarization will have vanished. In quantum mechanics
there is a name for measurements for which the quantum object remains in the state that is
recorded: these are called quantum non-demolition (QND) measurements. Fortunately, there are
many implementations of QND-type measurements, and the types of scattering measurements
proposed here will have the QND character.

Secondly, there is a choice of basis involved in defining parity. Thus, while in the classical
basis (called the ‘Z basis’ [1]) we would call 0000, 0011, 0110, etc the even parity states, it
is possible to take the basis of the qubit to be, for example |+〉 = (|0〉 + |1〉)/

√
2 and |−〉 =

(|0〉 − |1〉)/
√

2. In this ‘X basis’, the even parity states are + + ++, + + −−, + − −+, etc. In fact,
both the X- and Z-type parity checks are needed in quantum error correction. We will introduce
a parity measurement for just one basis, understanding that it is possible to apply one-qubit gates
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to rotate the qubits so that the parity detection is either of X- or of Z-type. In the superconducting
qubit systems that we discuss, these one-qubit rotations can be performed very accurately and
quickly.

Thirdly, it is crucial that the parity measurements reveal only the parity, and nothing more.
For example, the states 0000 and 0011 should both give parity ‘even’, and should be seen as
identical in the measurement process. This concept has no meaning in the classical setting,
where 0000 and 0011 represent objectively different states. Quantum mechanics permits a
state like (|0000〉 + |0011〉)/

√
2, which does not have a specific, definite bit state, but which

nevertheless has a definite parity. In fact, we employ here a strengthening of the idea of QND,
which traditionally requires only that a quantum state remains in a certain subspace after
measurement. For the measurements that we need, the state is to remain exactly unchanged,
and two states with the same parity should reveal nothing of the differences between them.

In quantum physics, this final concept has been given a name, the quantum eraser [3]. This
name refers to the fact that typically in the course of the measurement process, information
is temporarily imprinted on the measurement probe, which is however erased by the end of
the measurement process. In interferometry this information is the welcher weg (‘which path’)
information which temporarily exists while a photon is moving through the interferometer.
This information is erased by the passage of the photon through the final beam splitter of
the interferometer. In the implementation we develop below, the measurement probe will
temporarily have ‘which bitstring’ information, which, by the time the scattering process is
complete, will be all erased, except for a single bit of parity information. We will show explicitly
two different microwave protocols which will permit this quantum eraser condition to be
satisfied; we will in fact precisely quantify the degree to which this condition is fulfilled.

Discussions of parity measurements are not new to quantum computing theory; it
was understood almost from the beginning that two-qubit parity measurement permitted
the implementation of standard two-qubit logic gates [4]. A wide variety of two-qubit
implementations have been proposed, in electron optics [5], for spin qubits in quantum dots [6]
and for charge qubits [7]. The previous discussions of two-qubit parity measurement for atoms
in optical cavities [8], and for superconducting qubits [9, 10], will be particularly relevant
for this work. Other theoretical work has simulated the details of the parity measurement
process [11, 12], and more generally of ‘joint measurement’, in which other two-qubit operators
than the parity are detected. Such joint measurements have been achieved in the area of circuit
QED [13–16], the implementation that we discuss here.

In particular, for the application to fault-tolerant error correction [17, 18], it is very
important to go beyond two-qubit parity. While quantum error correction codes are known
for which two-qubit parity measurements do suffice [19], they are found to have much worse
threshold-rate behavior than the Kitaev code [2], which requires four-qubit checks [20]. The
Bacon–Shor codes [21] also permit error correction with only two-bit parity checks, and have
rather good error correction performance [22], but cannot achieve fault-tolerant operation by
only local operations [23]. Many architectural details of a quantum computer employing the
surface code have been worked out [24], and the outlook seems quite favorable [20, 25, 26].
Much less is known about the efficacy of three-qubit parity measurements for error correction,
although there is a very promising, recent preliminary result [27].

Extending existing two-qubit parity measurements to more than two is not trivial.
Classically combining many two-bit parity results to obtain a multi-qubit parity is not permitted,
as the overall quantum eraser condition is not satisfied in this case. A real modification of
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the measurement protocol or of the coupling structure is necessary. For some other existing
schemes [9, 10], we see no reasonable extension to more than two-qubits; in the case of
Kerchhoff et al [8] such an extension is possible, as we note below. There is another related
proposal for a multi-qubit parity measurement in optical systems [28] based on the acquisition
of successive small phase shifts by a probe beam; this scheme seems to require some fine tuning,
and has no clear extension beyond three qubits. A very recent proposal shows another technique
related to the one we present here for extracting multi-qubit parities [29].

We present here a new solution, requiring a specifically designed cavity (or multi-cavity)
structure with multiple, closely spaced resonant modes. We first provide a detailed proposal for
performing the three-qubit parity measurement, with accurate satisfaction of the quantum eraser
condition, in circuit quantum electrodynamics using superconducting qubits. In the current work
the preferred type of superconducting qubit is the ‘transmon’ type [30], although other types
would also be possible [31]. We will always require that the couplings between qubits and
microwave resonators be in the well-studied ‘dispersive regime’ [32, 33], in which the qubit
transition frequency and the microwave resonant frequency are well separated. In this regime,
the qubit gives a state-dependent shift to the resonant frequency of a microwave cavity—one
shift for qubit state |0〉, and a different shift for qubit state |1〉 (note that states 0 and 1 are
at different energies). In this regime, the requirements of the multi-qubit parity measurement
reduce to those of a classical microwave design problem.

Our first proposal requires a particular hardware arrangement, involving a capability that
has been developed only in the most recent experimental literature [34, 35]. In particular, we
require the qubits involved in a three-qubit parity measurement each to have equal dispersive
coupling to two different resonant modes. In the first version of our proposal described below,
these two different modes are realized as the fundamental modes of two different microwave
resonators. Crucial for the proposal is that each resonance should occur at nearly (but not
exactly) the same frequency. This near-coincidence allows a scattering phase shift to wind
through 2 × 2π over a narrow range of frequency. For the four-qubit parity, a winding of 6π is
needed, requiring three closely spaced resonant modes to be involved. Our second proposal will
deal with this case. We will show that multiple resonances need not require multiple resonators.
This proposal will use the currently popular three-dimensional (‘3D’) cavity [36], but one having
a nearly cubical shape so that the three lowest TE101-type modes [37] are nearly degenerate. We
will show a hypothetical scalable implementation of the surface code within this scheme.

2. Results—two-dimensional resonant structure

We will first show that the necessary quantum-erasure function can be realized by the choice
of circuit hardware illustrated in figure 1. We will work through and discuss the case of the
parity measurement for three qubits; generalizing our construction to more qubits is clear,
and will be discussed below. In this construction, we have two resonators (we envision
1/4-wave coplanar waveguide resonators [38], as illustrated schematically); in each we will
employ one resonant mode, with creation operators a† and b†. It would be normal to use the
lowest-frequency (fundamental) modes; all other modes are far separated in frequency (the
next being at three times the fundamental, in a 1/4-wave structure) and will be ignored. In
our scheme, these two fundamental frequencies ωa and ωb should be almost, but not exactly,
degenerate. The qubit–cavity coupling will be the standard one given by the Jaynes–Cummings
model in the dispersive regime [33]. It will be non-standard only in that each qubit will couple
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Figure 1. A schematic circuit QED setup for measuring the parity of three qubits.
Two transmission-line resonators have slightly different resonant frequencies fa

and fb. The three qubits Q1,2,3 (which could be of the transmon type) each
couple equally to the two resonators. The parity information is contained in the
phase of the reflection coefficient at point P , which, throughout the action of the
circulator, appears as a phase change of the output signal V − relative to the input
tone V −.

to both resonators, so that each qubit j will have a physical coupling strength g j,a to the a
resonator and g j,b to the b resonator. The Hamiltonian of the system of resonators and qubits
can be written as [32]

H =

ωa +
3∑

j=1

χ j
a σ j

z

 a†a +

ωb +
3∑

j=1

χ
j

b σ j
z

 b†b +
1

2

3∑
j=1

ω jσ
j

z . (2.1)

Here ω j are the qubit frequencies, and the dispersive coupling parameters are χ j
a = g2

j,a/1 j,a

with 1 j,a = ω j − ωa, and similarly for χ
j

b and 1 j,b. Note that we assume that the system should
be engineered so that there is no direct coupling between qubits.

As indicated in figure 1, this resonator/qubit structure is to be coupled capacitively to
a scattering probe. Rather than extend our Hamiltonian to include all these other details, we
proceed in the following way: since H commutes with each σ j

z , we can examine the Hamiltonian
separately in each of its 23 qubit eigensectors; within each of these sectors H describes a
harmonic bosonic system, with qubit-dependent resonant-frequency parameters. Thus, the full
scattering experiment can be described quite economically using the classical language of
impedance and scattering parameters; the conclusions we draw from this classical discussion
will have an immediate, standard quantum interpretation in terms of coherent-state propagation.

From ordinary electrical transmission line theory, the impedance between point A in
figure 1 and ground is given by

Z A(ω) = iZ0 tan

(
π

2

ω

ωr,a

)
. (2.2)

Here Z0 = 50� is the impedance of the waveguide. The effective resonant frequency ωr is
dependent on the state of the three qubits |s1s2s3〉 according to

ωr,a = ωa +
3∑

j=1

(−1)s j χ j
a . (2.3)

This same discussion applies to the qubit-state-dependent impedance Z B(ω) of the B resonator.
The impedance Z P(ω) of the entire structure at point P is then given by ordinary series and
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Figure 2. Equivalent circuit for the double-resonator structure [38]; Cra =
π

4ωr,a Z0
,

Lra =
1

ω2
r,aCra

, Crb =
π

4ωr,b Z0
, Lrb =

1
ω2

r,bCrb
.

parallel-combination rules. In fact in the frequency range of interest, the response is very well
represented by the lumped circuit of figure 2.

The measurable quantity for this structure is the reflection coefficient r at P . This is given
by [38]

r(ω) =
V −(ω)

V +(ω)
=

Z P(ω) − Z0

Z P(ω) + Z0
. (2.4)

Note that because Z P is purely imaginary (lossless), |r | = 1, so that only the phase of r ,

θ(ω) ≡ arg r(ω), (2.5)

contains information (which can in fact be measured interferometrically).
Our object is to find a probe frequency ωp such that the reflected signals for all the even-

parity qubit states and all the odd-parity states are indistinguishable, but that the reflection
coefficients for the even and odd cases are distinct. This will give us conditions on the reflected
phase θs1s2s3(ωp) for the different qubit state settings. A general feature of the θ function will
make this possible in our two-resonance setting. If ω passes through a resonance of the system
(pole of Z P), then, while the phase change of the impedance is π , the change of the reflected
phase is 2π (cf equations (2.4) and (2.5)). We will arrange that Z P has two poles within a narrow
range of frequency; this means that θ(ω) will vary smoothly over 4π in that range. But, from the
point of view of a scattered tone, θ and θ + 2πn are indistinguishable. Thus, the θ(ω) function
varies over a sufficient range that we can satisfy our quantum eraser condition for the parity
measurement in the following way:

θeven ≡ θ000(ωp) = θ011(ωp) + 2π, (2.6)

θodd ≡ θ111(ωp) = θ001(ωp) − 2π. (2.7)

Since the χ coefficient for all qubits is taken to be equal, the other necessary conditions,
θ011(ωp) = θ101(ωp) = θ110(ωp) and θ001(ωp) = θ010(ωp) = θ100(ωp), are satisfied automatically.
It is also necessary that θeven 6= θodd (mod 2π ), with the best case (most distinguishable) being
1θ ≡ θeven − θodd = π .

One can show that for any choice of parameters in the two-pole circuit, there exists a probe
frequency ωp and a dispersive shift constant χ such that the parity-measurement conditions
(equations (2.6) and (2.7)) are satisfied. However, if the resonant frequencies ωa and ωb are
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Figure 3. Solution for realistic values ωa = 2π(9.99 GHz), ωb =

2π(10.01 GHz), Ca = Cb = 10 f F ; with ωp = 2π(9.804 GHz), χ = 5.77 MHz,
giving 1θ = 172.9◦. Blue points correspond to even states whereas red
points correspond to odd states. Vertical blue line shows the probe frequency
fp = 9.804 GHz.

far apart compared with the width of the resonances, θeven − θodd is very small. By placing
the resonances close to one another and choosing the capacitance values carefully, a favorable
solution can be found. We note that for further optimization of this structure, there would be no
difficulty in replacing the simple pair of capacitors Ca,b with a capacitance bridge in a wye- or
delta-configuration [38].

Figure 3 shows a solution for the case of a realistic set of parameters. The choices are ωa =

2π(9.99 GHz), ωb = 2π(10.01 GHz), Ca = Cb = 10 f F ; note that realistic values for coupling
capacitors are in the 0.5 − 50 f F range (see [39]). Our equations (2.6) and (2.7) are satisfied
(after a simple, efficient numerical search) for ωp = 2π(9.804 GHz) and χ = 5.77 MHz, giving
the nearly optimal value 1θ = 172.9◦. Note that the coupling capacitors will introduce T1

qubit relaxation, but we can estimate that capacitances on this scale give a cavity loss rate
of κ ∼ 5 MHz. The Purcell formula for the resulting qubit relaxation time is T1(P) =

12

κg2 =
1

κχ
.

If we assume 1 = 5 GHz, this gives T1(P) ∼ 200 µs. Thus, the Purcell mechanism for relaxation
will not be a severe limit on the lifetime of the qubits.

We can qualitatively assess the result of applying the measurement tone for a finite length
of time. The signal-to-noise ratio for distinguishing even from odd is largely a technical matter
involving the noise performance of amplifiers and the effective temperature of filters associated
with the resonator-qubit structure. The quantum-erasure property sets a more fundamental limit.
If the measurement time is T , the measurement signal will then have a bandwidth W ∼ 1/T
around the probe frequency ωp, because the dispersion of the reflection response is different for
the different even and odd states (that is, dθ

dω
is different for the distinct states, see figure 3). Thus

we expect that to maintain the quantum-eraser condition, the bandwidth W should be kept to
a small fraction of the resonance width, so perhaps T ∼ 10/χ . This gives a measurement time
T ∼ 2 µs. While this is shorter than the expected T1 in current devices, it would be desirable
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to shorten T ; we expect that further optimization of the scattering structure could make all the
( dθ

dω
)odd and ( dθ

dω
)even more nearly equal, so that perhaps T could approach 1/χ .

A detailed calculation, given in the appendix, confirms these qualitative considerations.
This calculation involves a quantum treatment of the input tone V +, in which it is written as a
coherent state [40] |α〉, pulsed with a Gaussian time profile with characteristic time T = 1/W .
The pulse has mean photon number |α|

2, and therefore energy h̄ωp|α|
2. The output tone V −

is also a coherent state βs, but dependent on the qubit state |s〉 = |s1s2s3〉. The coherent state
amplitude is always unchanged, |βs| = |α|, but it is dispersed differently for each state because
of the scattering phase shift.

The relevant result from the appendix is

〈βs|βs′〉 = 1 −
|α|

2b2W 2

2
+ O(|α|

4b4W 4), qubit parities s and s′ the same, (2.8)

〈βs|βs′〉 = e−|α|
2(1−cos 1θ)

(
1 + O

(
W

dθ

dω

))
, qubit parities s and s′ different. (2.9)

The new parameter b is the first-order difference of phase dispersion

b ≡ θ ′

s

(
ωp

)
− θ ′

s′

(
ωp

)
. (2.10)

The quantum-eraser condition requires that the ‘same parity’ cases be indistinguishable
(〈βs|βs′〉 = 1), and the ‘different parity’ cases be perfectly distinguishable (〈βs|βs′〉 = 0).
Noting that, on dimensional grounds, b ∼ 1/χ , these quantum-erasure conditions are well
approximated so long as T = 1/W > |α|b ∼ |α|/χ . This confirms the qualitative discussion
above, with the additional insight that it is best if the probe is not too strong, i.e. if α is not too
large (or course, it should be greater than one to satisfy the ‘different parity’ condition). If the
photon number is taken to be |α|

2
= 5, and the pulse duration is T ≈ 1 µs, the peak pulse power

will be about P =
|α|

2h̄ωp

T = −135 dBm. This is indeed a weak signal, but in the detectable range
with the current state of the art [41].

2.1. Comparison with Kerchhoff et al

Before presenting our second proposal, we can compare our concept for three-qubit parity with
the three-qubit extension of the two-qubit parity measurement that was recently proposed by
Kerchhoff et al [8]. They propose sequential scattering from a set of cavities, each coupled
to one qubit; the extension of their idea to three qubits, as rendered in plausible microwave
components, is shown in figure 4. Note that for n-qubit parity this scheme uses n resonators,
while a generalization of our scheme above would use d(n + 1)/2e resonators (see the following
section). The Kerchhoff et al scheme is certainly elegant, and simpler in that each qubit only
needs to couple to a single cavity. The idea is to choose the coupling and the probe tone such that
there is a phase difference of π between qubit states 0 and 1; then this network constructs a sum
of the phases for each qubit [42].4 Each cavity should have exactly the same resonant frequency
(perhaps by tuning). This scheme is more obviously scalable to more qubits than ours, and it
would be possible in this scheme to get rid of the first-order dispersion effects which degrade

4 We have learned that the method stated here of synthesizing a desired circuit response by cascaded circulators
was known a long time ago; it is attributed to Desoer and Belevitch in [42].
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Figure 4. Circuit for three-qubit extension of the scheme proposed as a
cavity-optics experiment in [8], as it would be implemented with microwave
components in circuit QED.

the quantum-eraser condition, as calculated above. But, as we show in the appendix, the second-
order dispersion difference, which would still be present, leads to similar qualitative limits on
the measurement time and fidelity. Also, we point out that the quantum-eraser condition would
also be degraded by imperfections in the circulators, unlike in our scheme. Given that there
presently are no on-chip circulators suitable for qubit experiments (but see progress in [43, 44]),
we believe that our scheme is closer to being realized with currently available components.

3. Results—three-dimensional resonant structures

The theoretical generalization of our scheme to the measurement of the arguably more important
case of four-qubit parity is straightforward. We require three closely spaced resonances fa, fb

and fc, equal coupling χ of each qubit to each of the three resonances, and a network that
couples resonators to a single reflected probe. In this case again all measurable quantities will
emerge from a single reflected-phase function θs(ω). Since this function will vary smoothly over
6π , it will be possible to satisfy the three quantum-eraser equations for this case:

θeven = θ0000(ωp) = θ0011(ωp) + 2π = θ1111(ωp) + 4π, (3.1)

θodd = θ0111(ωp) = θ0001(ωp) − 2π. (3.2)

Tuning the fi values, χ and ωp give enough freedom so that these equations should always be
solvable. The analogous conditions for n-qubit parity are straightforward to write down; if we
use the notation θWt.i to indicate the phase shift if i of the quibits are 1, then the condition is

θwt.i(ωp) = θwt.i+2k(ωp) + 2kπ. (3.3)
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Combined with the desire that θWt.0(ωp) ≈ θWt.1(ωp) + π , we see that the θ function should vary
by at least πn. For even n this will be accomplished with n/2 + 1 resonances (so that θ winds
through phase π(n + 2)), while for odd n, (n + 1)/2 resonances suffice (θ winds through phase
π(n + 1) in this case). For both even and odd n, the number of resonances required can be written
d(n + 1)/2e, as stated above.

Returning to the consideration of four-qubit parity, we see that some new hardware
elements would be required to achieve this by an extension of the ‘2D’ (coplanar waveguide)
scheme above. The requirement that each qubit be equally coupled to each of three different
coplanar waveguide (CPW) resonators has not previously been achieved. It seems likely that it
is doable with the use of air bridges, which have only recently entered the toolkit of quantum
microwave engineering (see [45, 46]). Another possible way to obtain the multiple resonant
modes needed for multi-qubit parity measurement would involve the use of multi-conductor
CPWs [45], which naturally support modes that are closely spaced in frequency.

But given these difficulties, we explore a second protocol to achieve the implementation
of four-qubit parity measurement, involving ‘3D’ superconducting cavities [36]. These high-
quality factor rectangular cavities have recently been proven to be excellent implementations
of nearly decoherence-free Jaynes–Cummings physics [29]. In these the qubit–cavity coupling
is provided by antenna structures extending out from the transmon qubits [36]. Multi-qubit
structures [47] have been achieved in this technology, and bridging qubits, antenna-coupled to
two different cavities, are now possible [48]. This second protocol illustrates a further fact,
which is that multiple, closely spaced resonances can be achieved within a single resonant
structure.

Figure 5 illustrates the concept of this second protocol, also showing how it could be
extended to be part of a scalable implementation of the surface code architecture [24, 49]. The
key modification in this structure is that the 3D cavities, rather than having a large aspect ratio
in which w � l � h (w = width, l = length, h = height), should be nearly, but not exactly,
cubical. Thus, the three lowest resonant modes would be nearly degenerate in frequency, since
their wavelengths will be set by π/w, π/ l and π/h. (Be warned that the traditional labels for
these modes are TE101, TE011 and TM110 [37].) Each cavity is coupled, via antenna structures,
to four qubits, two on the front surface in figure 5 and two on the back (not shown). Each
antenna runs along the body diagonal (i.e. 〈111〉 axis) of the cubical cavity; with this geometry
the coupling is equal to each of the three eigenmodes, whose modal electric field patterns point
straight along one of the three coordinate axes.

Unlike for our first (‘2D’) proposal, we will not provide calculations of the performance
of the structure of figure 5. While the structure of figure 1 can be analyzed using elementary
transmission line theory and a few component parameter values whose ranges are well
understood, the system of figure 5 is a complex, 3D structure whose electromagnetic response
can only be obtained reliably by detailed calculations that are beyond the scope of this paper.
It is encouraging that progress is being made in the detailed modeling of couplings in such a
3D geometry [51]. We note that many details of figure 5, such as the thin-film metallization
around the qubit, contacts between chip conductors and antenna and cavity metal, the shape of
the antennas and the exact geometry of the cavities, should be optimized by detailed simulation.
One comment on the cavity structure: while the cubical cavity satisfies the requirement of three
closely spaced modes in an elegant way, it will be perhaps discouragingly large (centimeter-
scale) from the point of view of potential scale-up of the surface code. Work is commencing on
much different forms of resonator geometries, which by being ‘quasi-lumped’ [52], can be much
more physically compact. It will not be necessary to remain only with the platonic cavities.
New Journal of Physics 15 (2013) 075001 (http://www.njp.org/)
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Figure 5. Potentially scalable implementation of the surface code using direct
four-qubit parity measurements. (a) Overview of the proposed structure. A solid
plate of metal (Al or Cu, as in recent experiments [36, 50]) is perforated with
nearly square holes. The thickness of the plate is close to the dimension of
the square. When closed with thin top and bottom plates (not shown), these
holes become nearly cubical microwave cavities. Qubit structures are grown
on chips (lighter squares) using existing thin-film techniques. The insulating
side of the chip is mounted to a junction point in the perforated plate; half of
the junctions contain chips at the front surface of the plate, and the other half
are on the back side (not visible). Each qubit is in electrical contact, via leads
going to the corners of the chip, with four antenna structures (tapered rods)
projecting diagonally into the four cubical cavities surrounding the chip. Each
cavity will enable a four-qubit parity measurement, either ZZZZ or XXXX,
as indicated. The external feed lines needed to interrogate each cavity by
reflectometry will enter via one of the unoccupied corners of the cubes (not
shown). (b) Close-up around one-qubit chip. It could be made in the conventional
way, in which a thin film of metal is etched away in slot regions, exposing
the underlying insulating substrate (orange). This forms four short segments of
coplanar waveguide structures, with the center conductor (green) going to each
of the corners of the chip. One small structure (blue) containing a Josephson
junction connects the central region of center conductor to one of the ground
planes (light gray). The four triangular ground-plane regions are tied to the metal
plate, and therefore to each other, by bridges or wire bonds near the corners
of the chips. Such bridge/bond connections are also made between the four
center conductors and the antenna rods. Insulating support structures isolating
the antennas from the conducting walls are only schematically shown. The
consequence of this connection arrangement is that the Josephson junction is
shunted by four capacitances in series, each formed by an antenna and the side
walls of the cavity containing it. Presumed optimal dimensions for the chip (sub-
millimeter) and cavity (few centimeter) are not accurately depicted. This figure
contains views from a Google Sketchup rendering.
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4. Discussion and conclusions

We consider our basic schemes of figures 1 and 5 to be realistic for implementation by
experiment. For figure 1, a precise thin-film layout of an on-chip structure (to the right of point
P in figure 1) could be devised based on the parameter values we have determined. It is clear
that detailed electromagnetic modeling would be useful to guide the layout design [53]. The
values obtained for Ca and Cb correspond to well-known few-finger interdigitated capacitors.
We foresee three main difficulties: (i) coupling each qubit to the two resonators and (ii) tuning
the qubits to achieve the equal-χ condition. The topology of the chip layout would preclude
bringing flux-bias lines to each qubit; it is possible that only two of the three qubits would need
to be tuned, and one of these tunings could be from an external magnetic field; (iii) measuring
few-photon signal levels. It appears that the standard high electron mobility transistor amplifier
arrangements would have too much noise for the conditions we have calculated; adoption of
new, quantum-limited amplification will be needed for high-fidelity readout.

The 3D scheme of figure 5 will require more work to assess its optimal implementation.
Achieving the parameter values envisioned by our theory will require detailed simulation of the
complex structure that we have proposed, with many details subject to variation. Since the direct,
ancillaless approach studies here are so different from the existing technique of collecting error
syndromes with the action of a quantum circuit using ancillas, we believe that it is impossible to
know which approach will be superior. Further studies and refinement of both approaches will
be necessary to determine which will provide the best way forward.

So, it may be that our proposals can only attain satisfactory performance in structures
in which the resonators are tuneable (as in [54–56]), or qubits are tuneable in frequency (as
in [15] and in many other works) or in effective coupling strength (as in [57]). Application of
these device construction techniques, as well as near-quantum-limited amplification [41], will
be likely needed to achieve high-fidelity, single-shot parity measurement as envisioned in the
proposals we give here. We hope that following this route will indeed be facilitated by the many
interesting experimental [58–60] and theoretical [12, 61, 62] innovations in the application of
circuit QED that we see presently.

The proposals of this paper are not the blueprint for a scalable quantum computer; they
are concepts on which further detailed studies to determine optimal device functionality can
be based. While the structures that we suggest here will by no means be trivially realized, we
believe that the crucial role played by parity measurement in the implementation of reliable
quantum computation makes these approaches worthwhile to pursue.
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Appendix

In this appendix, we will compute fidelities between output signals for the case of a finite
bandwidth probe.
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We compute the fidelity between output signals corresponding to two different qubit states
|s〉 and |s′

〉. We first construct the creation operator â†
pulse corresponding to a finite bandwidth

probe pulse as a linear combination of a densely spaced, discrete set of harmonic modes â†
ωi

[63]:

â†
pulse =

∑
i

Ci â
†
ωi

(A.1)

with

Ci =

√
δωe−(ωi −ωp)

2
/4W 2(

2πW 2
)1/4 , (A.2)

where ωp is the center frequency, W is the bandwidth of the probe signal, ωi is the frequency
of mode i and δω is the difference between frequencies of successive modes. In the above
expression, the weight Ci of each term is chosen such that in the limit of a continuum of modes
(δω → 0) the unitarity constraint is satisfied [63]:∑

|Ci |
2
≈

1
√

2πW 2

∫
∞

−∞

dω e−(ω−ωp)
2
/2W 2

(A.3)

= 1 + O(δω). (A.4)

Now we define a coherent state of amplitude α for probe pulse:

|α〉 = e−|α|
2/2 eαâ†

pulse |0〉 . (A.5)

If we define an amplitude αi for mode i as follows:

αi ≡ αCi = α

√
δω e−(ωi −ωp)

2
/4W 2(

2πW 2
)1/4 (A.6)

using the fact

lim
δω→0

∑
i

|αi |
2
= |α|

2 lim
δω→0

∑
i

|Ci |
2
= |α|

2 , (A.7)

we can rewrite the coherent probe state |α〉 in equation (A.5) in the continuum modes limit as

|α〉 = e−|α|
2/2 eαâ†

pulse |0〉 (A.8)

= e
−

1
2

∑
i
|αi |

2

eα
∑

i Ci â
†
ωi |0〉 (A.9)

=

∏
i

e−|αi |
2/2 eαi â

†
ωi |0〉 (A.10)

=

∏
i

|αi〉 , (A.11)

where we have defined a coherent state for each mode i as

|αi〉 = e−|αi |
2/2 eαi â

†
ωi |0〉 . (A.12)

New Journal of Physics 15 (2013) 075001 (http://www.njp.org/)

http://www.njp.org/


14

Now if the qubits are in state |s〉 the coherent component |αi〉 of the input probe at frequency
ωi will get a phase shift of θs (ωi) and go to the state

∣∣αi eiθs(ωi )
〉
. If we call |βs〉 the state of the

output signal when qubits are in state |s〉 we can compute the fidelity

F = 〈βs|βs′〉 (A.13)

=

∏
i

〈
αi eiθs(ωi )|αi eiθs′ (ωi )

〉
(A.14)

=

∏
i

exp
{
− |αi |

2 (1 − e−i(θs(ωi )−θs′ (ωi )))
}

(A.15)

= exp

{
−

∑
i

|αi |
2 (1 − e−i(θs(ωi )−θs′ (ωi )))

}
. (A.16)

Expanding the phases around the center frequency of the probe ωi = ωp + 1ωi :

θs (ωi) = θs
(
ωp

)
+ θ ′

s

(
ωp

)
1ωi + O

(
(1ωi)

2
)
, (A.17)

θs′ (ωi) = θs′

(
ωp

)
+ θ ′

s′

(
ωp

)
1ωi + O

(
(1ωi)

2
)
. (A.18)

Now, we consider the case when s and s′ have the same parity. Then θs(ωp) = θs′(ωp) mod(2π ),
and we get to the first order in 1ωi

F = exp

{
−

∑
i

|αi |
2 (1 − e−ib1ωi )

}
, (A.19)

where we have defined

b ≡ θ ′

s

(
ωp

)
− θ ′

s′

(
ωp

)
. (A.20)

Using the expression for αi in equation (A.6) and taking the limit of continuum of modes the
sum in the exponent of the above expression becomes an integral

F = exp

{
−

|α|
2

√
2πW 2

∫
∞

−∞

dω e−(ω−ωp)
2
/2W 2

(1 − e−ib(ω−ωp))

}
(A.21)

= exp
{
− |α|

2
(

1 − e−b2W 2/2
)}

. (A.22)

If bW � 1 then 1 − e−b2W 2/2
'

b2W 2

2 so that

F ' e−|α|
2b2W 2/2. (A.23)

If we further assume that |α| bW�1 we obtain

F ' 1 −
|α|

2 b2W 2

2
. (A.24)

The fidelity between odd and even states is given by a simpler calculation

Feven/odd =
〈
α eiθeven|α eiθodd

〉
(A.25)

= e−|α|
2(1−cos 1θ)

≈ e−2|α|
2
. (A.26)

The final expression is a consequence of the fact that 1θ ≈ π .
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Another case we look at, relevant for the alternative scheme of [8], is the case of matching
linear dispersion (i.e. b = 0) but finite quadratic dispersion mismatch

b′
≡

d2θs (ω)

dω2

∣∣∣∣
ωp

−
d2θs (ω)

dω2

∣∣∣∣
ωp

. (A.27)

Then the fidelity, for the case of the same parity, is

F =

∣∣∣∣∣exp

{
−

∑
i

|αi |
2 (1 − e−ib′(1ωi )

2
)

}∣∣∣∣∣ . (A.28)

Again in the limit of continuum of modes F becomes

F =

∣∣∣∣exp

{
−

|α|
2

√
2πW 2

∫
∞

−∞

dω e−(ω−ωp)
2
/2W 2

(1 − e−ib′(ωi −ωp)
2

)

}∣∣∣∣ (A.29)

=

∣∣∣∣exp

{
− |α|

2

(
1 −

1
√

1 + 2ib′W 2

)}∣∣∣∣ (A.30)

= exp

{
Re

[
− |α|

2

(
1 −

1
√

1 + 2ib′W 2

)]}
(A.31)

= exp

− |α|
2

1 −

√
1 +

√
1 + 4b′2W 4

2 + 8b′2W 4

 (A.32)

' 1 −
3 |α|

2 b′2W 4

2
+ O

(
|α|

4
(
b′W 2

)4
)

, (A.33)

where we assumed that b′W 2
� 1 and |α| b′W 2

�1.
To obtain an estimate for the power of the measurement signal, we assume that the signal

contains |α|
2
= 5 photons and that it has duration T = 1 µs so that the peak power P will

roughly be P =
|α|

2h̄ωp

T = −135 dBm.
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