12 research outputs found

    A survey of agent-oriented methodologies

    Get PDF
    This article introduces the current agent-oriented methodologies. It discusses what approaches have been followed (mainly extending existing object oriented and knowledge engineering methodologies), the suitability of these approaches for agent modelling, and some conclusions drawn from the survey

    Ticket to Talk: Supporting Conversation between Young People and People with Dementia through Digital Media

    Get PDF
    We explore the role of digital media in supporting intergenerational interactions between people with dementia and young people. Though meaningful social interaction is integral to quality of life in dementia, initiating conversation with a person with dementia can be challenging, especially for younger people who may lack knowledge of someone’s life history. This can be further compounded without a nuanced understanding of the nature of dementia, along with an unfamiliarity in leading and maintaining conversation. We designed a mobile application - Ticket to Talk - to support intergenerational interactions by encouraging young people to collect media relevant to individuals with dementia to use in conversations with people with dementia. We evaluated Ticket to Talk through trials with two families, a care home, and groups of older people. We highlight difficulties in using technologies such as this as a conversational tool, the value of digital media in supporting intergenerational interactions, and the potential to positively shape people with dementia’s agency in social settings

    Towards real-time photon Monte Carlo dose calculation in the cloud

    Get PDF
    Near real-time application of Monte Carlo (MC) dose calculation in clinic and research is hindered by the long computational runtimes of established software. Currently, fast MC software solutions are available utilising accelerators such as graphical processing units (GPUs) or clusters based on central processing units (CPUs). Both platforms are expensive in terms of purchase costs and maintenance and, in case of the GPU, provide only limited scalability. In this work we propose a cloud-based MC solution, which offers high scalability of accurate photon dose calculations. The MC simulations run on a private virtual supercomputer that is formed in the cloud. Computational resources can be provisioned dynamically at low cost without upfront investment in expensive hardware. A client-server software solution has been developed which controls the simulations and transports data to and from the cloud efficiently and securely. The client application integrates seamlessly into a treatment planning system. It runs the MC simulation workflow automatically and securely exchanges simulation data with the server side application that controls the virtual supercomputer. Advanced encryption standards were used to add an additional security layer, which encrypts and decrypts patient data on-the-fly at the processor register level. We could show that our cloud-based MC framework enables near real-time dose computation. It delivers excellent linear scaling for high-resolution datasets with absolute runtimes of 1.1 seconds to 10.9 seconds for simulating a clinical prostate and liver case up to 1% statistical uncertainty. The computation runtimes include the transportation of data to and from the cloud as well as process scheduling and synchronisation overhead. Cloud-based MC simulations offer a fast, affordable and easily accessible alternative for near real-time accurate dose calculations to currently used GPU or cluster solutions

    Strengthening Zero-Knowledge Protocols using Signatures

    No full text
    Recently there has been an interest in zero-knowledge protocols with stronger properties, such as concurrency, unbounded simulation soundness, non-malleability, and universal composability. In this paper
    corecore