1,690 research outputs found

    Beauveria bassiana strain ATCC 74040 (NaturalisÂź), a valuable tool for the control of the cherry fruit fly (Rhagoletis cerasi)

    Get PDF
    Naturalis¼ is a bioinsecticide based on living conidiospores of the naturally occuring Beauveria bassiana strain ATCC 74040. The entomopathogenic fungus acts primarily by contact: once attached to the insect’s cuticle, the conidiospores germinate producing penetration hyphae, which enter and proliferate inside the insect’s body. The fungus invades and feeds on its host, causing its death due to dehydration and/or depletion of nutrients. Several years of laboratory, semi-field and field studies showed that also Tephritid flies (Ceratitis capitata, Rhagoletis cerasi, Bactrocera oleae) are susceptible to infection by B. bassiana strain ATCC 74040. The results of efficacy trials conducted in 2004-05 are reported. Naturalis was tested both alone and in an integrated pest management strategy. The product showed high efficacy in controlling R. cerasi, comparable to or higher than that of the chemical reference treatment. The B. bassiana-based product Naturalis can thus be considered an efficient tool for the control of the cherry fruit fly

    Camera Obscura vs. Camera Lucida – Distinguishing Early Nineteenth Century Modes of Seeing

    Get PDF

    Systematic quantum corrections to screening in thermonuclear fusion

    Get PDF
    We develop a series expansion of the plasma screening length away from the classical limit in powers of ℏ2\hbar^{2}. It is shown that the leading order quantum correction increases the screening length in solar conditions by approximately 2% while it decreases the fusion rate by approximately 0.34 0.34%. We also calculate the next higher order quantum correction which turns out to be approximately 0.05%

    Mantle geoneutrinos in KamLAND and Borexino

    Full text link
    The KamLAND and Borexino experiments have observed, each at ~4 sigma level, signals of electron antineutrinos produced in the decay chains of thorium and uranium in the Earth's crust and mantle (Th and U geoneutrinos). Various pieces of geochemical and geophysical information allow an estimation of the crustal geoneutrino flux components with relatively small uncertainties. The mantle component may then be inferred by subtracting the estimated crustal flux from the measured total flux. To this purpose, we analyze in detail the experimental Th and U geoneutrino event rates in KamLAND and Borexino, including neutrino oscillation effects. We estimate the crustal flux at the two detector sites, using state-of-the-art information about the Th and U distribution on global and local scales. We find that crust-subtracted signals show hints of a residual mantle component, emerging at ~2.4 sigma level by combining the KamLAND and Borexino data. The inferred mantle flux slightly favors scenarios with relatively high Th and U abundances, within +-1 sigma uncertainties comparable to the spread of predictions from recent mantle models.Comment: Slight changes and improvements in the text & figures. Results unchanged. To appear in Phys. Rev.

    Fire and Explosion Risk Assessment: Application to the Fine Chemicals Industry

    Get PDF
    The "so-called" Seveso III directive (Directive 2012/18/EU) impose to plant managers to perform a detailed risk assessment and to adopt adequate protection measures in the case their facility is included among those considered subjected to Major Accident, i.e., if the amount of hazardous substances stocked and handled within it is superior to defined threshold limits. Fire risk evaluation needs to consider each plant's complexity and the different regulations and codes it is subjected to. Meanwhile, a thorough approach is required, which does not base itself uniquely on qualitative methods (such as checklists) or semi-quantitative (such as fire load-based approach) but should consider these latter as starting processes to develop a more comprehensive evaluation. Besides this, accident scenarios associated with chemical plants may differ significantly, according to the substances handled, the activities and processes implemented: Typically, they could range from small to medium scale in terms of consequences, depending on the impact on human operators and structures. Several "risk screening" methods exist, differing from their fields of applications and limitations, as detailed by Danzi et al. (2018). The SWandHI methodology was developed by Khan et al. (2001). It is a fast tool that allows to identify the most hazardous units in chemical process plants, underline the criticalities associated with different substances, processes, and operations, evaluate the effectiveness of the protection measures in place, compare the risk level attributed to different chemical processes, define the adequate additional measures to reduce the risk to an acceptable level. In this work, the SWandHI method (with the modifications proposed in Danzi et al. 2018) is adopted as a preliminary risk screening approach in the production departments of a fine chemicals production plant in Northern Italy, which is identified as a relevant case study due to the heterogeneity of substances and chemical processes available. This study aims to verify the applicability and effectiveness of SWandHI when adopted in the evaluation of fire risk of "medium-size" plants, or "just below" Seveso III thresholds facilities (which could be considered as a majority in Italy), and to identify the prevention and protection measures most suitable to be implemented in this context to mitigate the fire and explosion scenario. The risk assessment conducted in this work will contribute, with further applications, to: (a) the tuning and calibration of the SWandHI method to "medium" scale chemical industrial realities; (b) the definition of a standard procedure of fire and explosion risk screening through SWandHI; (c) the implementation of the validated method into the Italian fire risk regulations

    Photoinjector-generation of a flat electron beam with transverse emittance ratio of 100

    Full text link
    The generation of a flat electron beam directly from a photoinjector is an attractive alternative to the electron damping ring as envisioned for linear colliders. It also has potential applications to light sources such as the generation of ultra-short x-ray pulses or Smith-Purcell free electron lasers. In this Letter, we report on the experimental generation of a flat-beam with a measured transverse emittance ratio of 100±20.2100\pm 20.2 for a bunch charge of ∌0.5\sim 0.5 nC; the smaller measured normalized root-mean-square emittance is ∌0.4\sim 0.4 ÎŒ\mum and is limited by the resolution of our experimental setup. The experimental data, obtained at the Fermilab/NICADD Photoinjector Laboratory, are compared with numerical simulations and the expected scaling laws.Comment: 5 pages, 3 figure

    Reduced face identity aftereffects in relatives of children with autism

    Get PDF
    • 

    corecore