9,207 research outputs found

    The Evolution of Active Galactic Nuclei in Warm Dark Matter Cosmology

    Full text link
    Recent measurements of the abundance of AGN with low-luminosities (L_X< 10^44 erg/s in the 2-10 keV energy band) at high redshifts z>4 provide a serious challenge for Cold Dark Matter (CDM) models based on interaction-driven fueling of AGN. Using a semi-analytic model of galaxy formation we investigate how such observations fit in a Warm Dark Matter (WDM) scenario of galaxy formation, and compare the results with those obtained in the standard CDM scenario with different efficiencies for the stellar feedback. Taking on our previous exploration of galaxy formation in WDM cosmology, we assume as a reference case a spectrum which is suppressed - compared to the standard CDM case - below a cut-off scale ~ 0.2$ Mpc corresponding (for thermal relic WDM particles) to a mass m_X=0.75 keV. We run our fiducial semi-analytic model with such a WDM spectrum to derive AGN luminosity functions from z~6 to the present over a wide range of luminosities (10^43< L_X/erg/s < 10^46 in the 2-10 keV X-ray band), to compare with recent observations and with the results in the CDM case. When compared with the standard CDM case, the luminosity distributions we obtain assuming a WDM spectrum are characterized by a similar behaviour at low redshift, and by a flatter slope at faint magnitudes for z>3, which provide an excellent fit to present observations. We discuss how such a result compares with CDM models with maximized feedback efficiency, and how future deep AGN surveys will allow for a better discrimination between feedback and cosmological effects on the evolution of AGN in interaction-driven models for AGN fueling.Comment: Accepted for publication in The Astrophysical Journal; typos and references correcte

    Triggering Active Galactic Nuclei in Hierarchical Galaxy Formation: Disk instability vs. Interactions

    Full text link
    Using a semi analytic model for galaxy formation we investigate the effects of Black Hole accretion triggered by disk instabilities (DI) in isolated galaxies on the evolution of AGN. Specifically, we took on, developed and expanded the Hopkins & Quataert (2011) model for the mass inflow following disk perturbations, and compare the corresponding evolution of the AGN population with that arising in a scenario where galaxy interactions trigger AGN (IT mode). We extended and developed the DI model by including different disk surface density profiles, to study the maximal contribution of DI to the evolution of the AGN population. We obtained the following results: i) for luminosities corresponding to M1450≳−26M_{1450}\gtrsim -26 the DI mode can provide the BH accretion needed to match the observed AGN luminosity functions up to z≈4.5z \approx 4.5; in such a luminosity range and redshift, it can compete with the IT scenario as the main driver of cosmological evolution of AGN; ii) The DI scenario cannot provide the observed abundance of high-luminosity QSO with M1450≲−26M_{1450}\lesssim -26 AGN, as well as the abundance of high-redhshift z≈4.5z \approx 4.5 QSOs with M1450≲−24M_{1450}\lesssim -24, while the IT scenario provides an acceptable match up to z≈6z \approx 6, as found in our earliest works; iii) The dispersion of the distributions of Eddington ratio for low- and intermediate-luminosity AGN (bolometric LAGNL_{AGN} = 104310^{43} - 104510^{45} erg/s) is predicted to be much smaller in the DI scenario compared to the IT mode; iv) The above conclusions are robust with respect to the explored variants of the Hopkins & Quataert (2011) model. We discuss the physical origin of our findings, and how it is possible to pin down the dominant fueling mechanism in the low-intermediate luminosity range M1450≳−26M_{1450}\gtrsim -26 where both the DI and the IT modes are viable candidates as drivers for the AGN evolution.Comment: Accepted for publication in Astronomy & Astrophysics, 24 pages, 8 figures; updated reference

    q-Deformed quaternions and su(2) instantons

    Full text link
    We have recently introduced the notion of a q-quaternion bialgebra and shown its strict link with the SO_q(4)-covariant quantum Euclidean space R_q^4. Adopting the available differential geometric tools on the latter and the quaternion language we have formulated and found solutions of the (anti)selfduality equation [instantons and multi-instantons] of a would-be deformed su(2) Yang-Mills theory on this quantum space. The solutions depend on some noncommuting parameters, indicating that the moduli space of a complete theory should be a noncommutative manifold. We summarize these results and add an explicit comparison between the two SO_q(4)-covariant differential calculi on R_q^4 and the two 4-dimensional bicovariant differential calculi on the bi- (resp. Hopf) algebras M_q(2),GL_q(2),SU_q(2), showing that they essentially coincide.Comment: Latex file, 18 page

    q-Quaternions and q-deformed su(2) instantons

    Get PDF
    We construct (anti)instanton solutions of a would-be q-deformed su(2) Yang-Mills theory on the quantum Euclidean space R_q^4 [the SO_q(4)-covariant noncommutative space] by reinterpreting the function algebra on the latter as a q-quaternion bialgebra. Since the (anti)selfduality equations are covariant under the quantum group of deformed rotations, translations and scale change, by applying the latter we can generate new solutions from the one centered at the origin and with unit size. We also construct multi-instanton solutions. As they depend on noncommuting parameters playing the roles of `sizes' and `coordinates of the centers' of the instantons, this indicates that the moduli space of a complete theory will be a noncommutative manifold. Similarly, gauge transformations should be allowed to depend on additional noncommutative parameters.Comment: Latex file, 39 pages. Final version appeared in JM

    Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy formation models

    Get PDF
    We derive the contribution to the extragalactic gamma-ray background (EGB) from AGN winds and star-forming galaxies by including a physical model for the gamma-ray emission produced by relativistic protons accelerated by AGN-driven and supernova-driven shocks into a state-of-the-art semi-analytic model of galaxy formation. This is based on galaxy interactions as triggers of AGN accretion and starburst activity and on expanding blast wave as the mechanism to communicate outwards the energy injected into the interstellar medium by the active nucleus. We compare the model predictions with the latest measurement of the EGB spectrum performed by the Fermi-LAT in the range between 100 MeV and 820 GeV. We find that AGN winds can provide ~35±\pm15% of the observed EGB in the energy interval E_{\gamma}=0.1-1 GeV, for ~73±\pm15% at E_{\gamma}=1-10 GeV, and for ~60±\pm20% at E_{\gamma}>10 GeV. The AGN wind contribution to the EGB is predicted to be larger by a factor of 3-5 than that provided by star-forming galaxies (quiescent plus starburst) in the hierarchical clustering scenario. The cumulative gamma-ray emission from AGN winds and blazars can account for the amplitude and spectral shape of the EGB, assuming the standard acceleration theory, and AGN wind parameters that agree with observations. We also compare the model prediction for the cumulative neutrino background from AGN winds with the most recent IceCube data. We find that for AGN winds with accelerated proton spectral index p=2.2-2.3, and taking into account internal absorption of gamma-rays, the Fermi-LAT and IceCube data could be reproduced simultaneously.Comment: 12 pages, 8 figures, accepted for publication in A&

    AGN counts at 15um. XMM observations of the ELAIS-S1-5 sample

    Full text link
    Context: The counts of galaxies and AGN in the mid infra-red (MIR) bands are important instruments for studying their cosmological evolution. However, the classic spectral line ratios techniques can become misleading when trying to properly separate AGN from starbursts or even from apparently normal galaxies. Aims: We use X-ray band observations to discriminate AGN activity in previously classified MIR-selected starburst galaxies and to derive updated AGN1 and (Compton thin) AGN2 counts at 15 um. Methods: XMM observations of the ELAIS-S1 15um sample down to flux limits ~2x10^-15 erg cm^-2 s^-1 (2-10 keV band) were used. We classified as AGN all those MIR sources with a unabsorbed 2-10 keV X-ray luminosity higher that ~10^42 erg/s. Results: We find that at least about 13(+/-6) per cent of the previously classified starburst galaxies harbor an AGN. According to these figures, we provide an updated estimate of the counts of AGN1 and (Compton thin) AGN2 at 15 um. It turns out that at least 24% of the extragalactic sources brighter than 0.6 my at 15 um are AGN (~13% contribution to the extragalactic background produced at fluxes brighter than 0.6 mJy).Comment: Accepted for publication on A&
    • …
    corecore