294 research outputs found

    Signalling pathways involved in the detection of peptones by murine small intestinal enteroendocrine L-cells.

    Get PDF
    Glucagon like peptide-1 is an insulinotropic hormone released from intestinal L-cells in response to food ingestion. Here, we investigated mechanisms underlying the sensing of peptones by primary small intestinal L-cells. Meat, casein and vegetable-derived peptones (5 mg/ml), the L-amino acids Phe, Trp, Gln and Ala (20 mM each), and the dipeptide glycine-sarcosine (20 mM) stimulated GLP-1 secretion from primary cultures prepared from the small intestine. Further mechanistic studies were performed with meat peptone, and revealed the elevation of intracellular calcium in L-cells. Inhibition of the calcium sensing receptor (CaSR), transient receptor potential (TRP) channels and Q-type voltage gated calcium channels (VGCC) significantly attenuated peptone-stimulated GLP-1 release and reduced intracellular Ca(2+) responses. CaSR inhibition also attenuated the GLP-1 secretory response to Gln. Targeting these pathways in L-cells could be used to increase endogenous production of GLP-1 and offer exploitable avenues for the development of therapeutics to treat diabetes and obesity.This work was funded by grants from the Wellcome Trust (WT088357/Z/09/Z and WT084210/Z/07/Z), the MRC Metabolic Diseases Unit (MRC_MC_UU_12012/3) and Full4Health (FP7/2011-2015, grant agreement n° 266408).This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.peptides.2015.07.01

    The role of gut endocrine cells in control of metabolism and appetite.

    Get PDF
    After food is ingested, nutrients pass through the gastrointestinal tract, stimulating the release of a range of peptide hormones. Among their many local, central and peripheral actions, these hormones act to mediate glucose metabolism and satiety. Indeed, it is the modification of gut hormone secretion that is considered partly responsible for the normalization of glycaemic control and the reduction in appetite seen in many patients after certain forms of bariatric surgery. This review describes recent developments in our understanding of the secretion and action of anorexigenic gut hormones, primarily concentrating on glucagon-like peptide-1 (GLP-1).This is the final version. It was first published by Wiley in Experimental Physiology here: http://onlinelibrary.wiley.com/doi/10.1113/expphysiol.2014.079764/abstract

    Mechanisms underlying glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 secretion.

    Get PDF
    The incretin hormones, glucose-dependent insulinotropic peptide and glucagon-like peptide-1, are secreted from intestinal K- and L cells, respectively, with the former being most abundant in the proximal small intestine, whereas the latter increase in number towards the distal gut. Although an overlap between K- and L cells can be observed immunohistochemically or in murine models expressing fluorescent markers under the control of the two hormone promoters, the majority (>80%) of labeled cells seems to produce only one of these hormones. Transcriptomic analysis showed a close relationship between small intestinal K- and L cells, and glucose sensing mechanisms appear similar in both cell types with a predominant role of electrogenic glucose uptake through sodium-coupled glucose transporter 1. Similarly, both cell types produce the long-chain fatty acid sensing G-protein-coupled receptors, FFAR1 (GPR40) and FFAR4 (GPR120), but differ in the expression/functionality of other lipid sensing receptors. GPR119 and FFAR2/3, for example, have clearly documented roles in glucagon-like peptide-1 secretion, whereas agonists for the endocannabinoid receptor type 1 have been found to show largely selective inhibition of glucose-dependent insulinotropic peptide secretion. In conclusion, although K- and L cell populations overlap and share key molecular nutrient-sensing mechanisms, subtle differences between the responsiveness of the different cell types might be exploited to differentially modulate glucose-dependent insulinotropic peptide or glucagon-like peptide-1 secretion

    A unique olfactory bulb microcircuit driven by neurons expressing the precursor to glucagon-like peptide 1

    Get PDF
    Abstract: The presence of large numbers of local interneurons in the olfactory bulb has demonstrated an extensive local signaling process, yet the identification and purpose of olfactory microcircuits is poorly explored. Because the discrimination of odors in a complex environment is highly dependent on the tuning of information by local interneurons, we studied for the first time the role of preproglucagon (PPG) neurons in the granule cell layer of the olfactory bulb. Combining electrophysiological recordings and confocal microscopy, we discovered that the PPG neurons are a population of cells expressing the precursor of glucagon-like peptide 1 and are glutamatergic; able to modulate the firing pattern of the mitral cells (M/TCs). Optogenetic activation of PPG neurons resulted in a mixed excitation and inhibition that created a multiphasic response shaping the M/TCs firing pattern. This suggests that PPG neurons could drive neuromodulation of the olfactory output and change the synaptic map regulating olfactory coding
    corecore