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New Findings
� What is the topic of this review?

Gut hormones, especially glucagon-like peptide-1 (GLP-1), have beneficial effects in diabetes
and obesity. Recent research addresses the underlying mechanisms of the secretion and action
of GLP-1.

� What advances does it highlight?
The development of transgenic reporter mice with fluorescently tagged GLP-1-secreting cells
has helped to characterize the molecular mechanisms underlying hormone secretion and
has challenged the traditional classification of enteroendocrine cells by hormone expression
alone. Recent adoption of this strategy to label GLP-1-receptor-positive cells has highlighted
that peripheral and centrally released GLP-1 acts on a number of different targets, including
a variety of neurons. Evidence for their role in glucose homeostasis and appetite control is
discussed.

After food is ingested, nutrients pass through the gastrointestinal tract, stimulating the release
of a range of peptide hormones. Among their many local, central and peripheral actions, these
hormones act to mediate glucose metabolism and satiety. Indeed, it is the modification of gut
hormone secretion that is considered partly responsible for the normalization of glycaemic
control and the reduction in appetite seen in many patients after certain forms of bariatric
surgery. This review describes recent developments in our understanding of the secretion
and action of anorexigenic gut hormones, primarily concentrating on glucagon-like peptide-1
(GLP-1).
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Introduction

Over 20 different gut hormones are secreted from
enteroendocrine cells scattered throughout the gut
epithelial lining. Glucagon-like peptide-1 (GLP-1) is
released from L-cells that are found along the length
of the gut, with increasing density towards the
colon. Glucagon-like peptide-1 plays an important
role in promoting glucose homeostasis by augmenting
insulin secretion, suppressing glucagon secretion and
slowing gastric emptying, as well as by reducing food
intake. Numerous studies have reported additional

cardiovascular, renal and neurological1 effects of GLP-1
agonists, and the GLP-1 receptor (GLP1R) has been
identified in the lung, kidney, blood vessels and sinoatrial
cells of the heart (Richards et al. 2013; Pyke et al. 2014).
However, the physiological importance of many of these
findings is unclear.

Gut hormone secretion

Enteroendocrine cells have traditionally been categorized
into distinct types based on their localization, morphology
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and hormonal signature. This view has been challenged
recently by results generated from transgenic mouse lines
expressing fluorescent reporters under the control of
different gut peptide promoters. Such studies have enabled
the purification of cell populations expressing GLP-1
(L-cells), glucose-dependent insulinotropic polypeptide
(GIP; K-cells) or cholecystokinin (CCK; I-cells), suitable
for transcriptomic analysis, and have demonstrated an
unexpected degree of overlap between these cell types.
The L- and K-cells in the small intestine, for example,
were found additionally to express CCK, and comparison
of their transcriptomes showed they were more similar
to each other than to L-cells from the colon (Egerod
et al. 2012; Habib et al. 2012). Although overlaps
between enteroendocrine cell types had been noted in
earlier immunohistochemical studies, the detection of
cells expressing more than one hormone had previously
been limited by the sensitivity of the antibodies used for
cell identification (Mortensen et al. 2003; Theodorakis
et al. 2006). The results suggest that cells expressing

combinations of GLP-1, GIP, peptide YY (PYY), CCK,
neurotensin and secretin derive from a common cell
lineage and, with the high turnover of intestinal cells, raise
the possibility that the endocrine system may be relatively
adaptive.

The ability to isolate enteroendocrine cell populations
has accelerated the identification of cell-specific receptors,
ion channels and intracellular signalling pathways
involved in the sensing of nutrients. L-Cells were found
to be electrically excitable and to sense nutrient arrival
downstream of electrogenic uptake or activation of
G-protein-coupled receptors. The range of nutrients
detected by enteroendocrine cells, and their associated
sensors, include glucose (sodium-dependent glucose
transporter 1, KATP channels and glucokinase), bile
salts (GPBAR1), lipids (FFAR1, GPR120 and GPR119),
short-chain fatty acids (FFAR2 and FFAR3) and amino
acids (GPRC6A, CaSR, SNAT2 and B0AT1) and have been
reviewed recently by our group (Ezcurra et al. 2013).
Identifying the properties and functional roles of different
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Figure 1. Glucagon-like peptide-1 (GLP-1), cholecystokinin (CCK) and peptide YY (PYY) are released
from enteroendocrine cells in the intestinal lining and play an important role in glucose homeostasis
and appetite control
These hormones act locally, via afferent fibres close to their site of secretion, or after delivery around the
body in the circulation. Recent studies investigating the site of GLP-1 receptor expression have given us
further insights into the action of GLP-1. Glucagon-like peptide-1 acts on pancreatic β-cells and δ-cells to
augment insulin and suppress glucagon secretion. Glucagon-like peptide-1 slows gastric emptying and
gut motility, which is likely to involve both local and central signalling. Glucagon-like peptide-1 receptors
are expressed in the gastric pylorus, myenteric ganglia and gut nerve fibres, as well as the ganglia of
vagal and spinal afferents. Glucagon-like peptide-1 reduces food intake and appetite. Within the CNS,
GLP-1 neurones are present in the nucleus of the solitary tract, which receives synaptic input from the
vagus, and project to the appetite controlling regions of the hypothalamus, where GLP-1 receptors
are also found. Glucagon-like peptide-1 receptors are also expressed in areas of the mesolimbic system
associated with food motivation and reward. Abbreviation: DRG, dorsal root ganglion.
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enteroendocrine cell populations is crucial for the design
of strategies to enhance gut peptide secretion from specific
gut segments for the treatment of metabolic diseases.

Glucagon-like peptide-1 and glucose metabolism

Glucagon-like peptide-1 and GIP are best known for
mediating the incretin effect, whereby glucose admini-
stered orally triggers a much greater insulin response
than a matched intravenous dose. Glucose-dependent
insulinotropic polypeptide and GLP-1 receptor signalling
in pancreatic β-cells activates adenylate cyclase, leading
to the elevation of cAMP and augmentation of
glucose-dependent insulin secretion. Given that GLP-1
retains effectiveness in people with type 2 diabetes and
its action on insulin secretion is glucose dependent,
thus limiting the incidence of hypoglycaemic side-effects,
GLP-1 has proved an attractive therapeutic tool, and
long-acting GLP-1 analogues have been front-line tools
for the treatment of type 2 diabetes for the last decade.

Glucagon-like peptide-1 also inhibits glucagon
secretion from α-cells, although whether this is a
direct or an indirect effect is still controversial. In
common with other attempts to identify the direct
targets of GLP-1, uncertainties have arisen because of
the inadequate specificity of antisera against GLP1R.
An extensively validated GLP1R antibody has, however,
demonstrated membrane-associated staining restricted to
insulin-positive cells in human and monkey pancreas,
with an absence from α-cells (Pyke et al. 2014). As
an alternative to the use of antibodies for identifying
GLP-1 targets, we generated transgenic reporter mice,
in which cells expressing glp1r produce Cre recombinase
and can be identified by fluorescent markers. Analysis
of islets from these mice showed that glp1r is expressed
in only �10% of α-cells, but is highly expressed in
β-cells and somatostatin-producing δ-cells (Richards
et al. 2013). The data thus support previous results
from isolated, perfused rat pancreas, which showed that
GLP-1-stimulated somatostatin secretion acts in paracrine
manner to inhibit glucagon release from neighbouring
α-cells (de Heer et al. 2008).

Glucagon-like peptide-1 is a strong regulator of
gastrointestinal function, reducing gastric emptying,
intestinal motility and gastric secretions (Edholm et al.
2010). These actions play an important part in the effect
of GLP-1 on postprandial glycaemic excursions. The
underlying mechanisms are not fully understood and
likely to be complex. Glp1r was identified in scattered
myenteric ganglia and fibres throughout the murine
gut, and intraperitoneal administration of the GLP1R
agonist exendin-4 induced Fos-like immunoreactivity in
duodenal myenteric and submucosal neurons in fasted
rats (Washington et al. 2010; Richards et al. 2013). Glp1r

is also highly expressed in the gastric pylorus (Richards
et al. 2013), and in healthy humans, exogenous GLP-1
increases pyloric tone, relaxes the fundus and reduces
phasic contractions, resulting in slowed gastric emptying
(Schirra et al. 2000, 2009). Central reflexes are likely to
contribute to the control of gut motility, as suggested by
the identification of glp1r in subpopulations of nodose and
dorsal root ganglia cells, as well as in the central nervous
system (CNS).

Glucagon-like peptide-1 and appetite

Glucagon-like peptide-1 is part of a complex network
of gut hormones and neurones involved in relaying
information about food intake to the brain. The
vagus nerve provides a pathway by which GLP-1, like
several other gut hormones, can communicate with
central appetite circuits. Vagal afferent fibres project
peripherally to the visceral organs, including much of
the gastrointestinal system, and centrally to the brain-
stem, from which signals are relayed to the hypothalamus.
The finding that the effects of peripherally administered
GLP-1 on food intake were ablated after bilateral
subdiaphragmatic total vagotomy in rats demonstrated
the significance of vagal signalling in appetite control
(Abbott et al. 2005). Indeed, GLP-1 directly stimulates
activity in the afferent vagus and augments Ca2+ responses
in subpopulations of nodose ganglion cell bodies in vitro
(Bucinskaite et al. 2009; Richards et al. 2013).

In practice, the responsiveness of the vagus may vary
according to the nutritional status, as shown by an
altered balance in the expression of orexigenic versus
anorexigenic signalling machinery (Dockray & Burdyga,
2011), predominantly influenced by CCK but also by
leptin and apolipoprotein AIV (Dockray, 2013). In
rodent models, high-fat diet-induced obesity also reduces
vagal afferent sensitivity by disrupting the expression
of receptors such as glp1r (Daly et al. 2011; Duca
et al. 2013). Interestingly, we identified cells expressing
glp1r in dorsal root ganglia, suggesting that spinal
sensory neurones might represent an alternative route of
communication to the CNS. This raises the possibility
that GLP-1 released from proximal compared with
distal L-cells might trigger different central responses,
depending on the neural circuitry recruited. The idea that
endogenous GLP-1 released from different sites might
not be functionally equivalent is an important factor to
consider in the design of new therapeutics, and may be
relevant to the interpretation of bariatric surgery outcomes
which favour GLP-1 release from more distal L-cell
populations.

As GLP-1 and GLP1R are also produced in various
regions of the CNS, the role of gut-derived (as opposed
to centrally derived) GLP-1 has been difficult to
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define. Within the CNS, GLP-1 neurones are found
predominantly in the nucleus of the solitary tract, which
receives synaptic input from vagal afferent fibres. These
neurones are responsive to leptin and CCK but not
to PYY or GLP-1 itself (Hisadome et al. 2010, 2011).
Glucagon-like peptide-1 neurones in the nucleus of the
solitary tract project to the hypothalamus, where glp1r
is expressed in the arcuate and paraventricular nuclei,
raising the possibility that gut-derived GLP-1, signalling
via the vagus, may result in the release of central GLP-1
(Llewellyn-Smith et al. 2011; Richards et al. 2013).

A study using peripherally or centrally injected
exendin-(9–39), a GLP1R antagonist, prior to peripherally
or centrally injected GLP-1 demonstrated that the
reduction in food intake due to peripheral GLP-1 was
blocked only by peripheral exendin-(9–39), whereas the
effect of central GLP-1 was blocked only by central
exendin-(9–39). This indicated that in its effects on
appetite, gut-derived GLP-1 acts predominantly via GLP-1
receptors accessible from the periphery (Williams et al.
2009). Glp1r expression has also, however, been found
in areas of the CNS that are accessible to circulating
hormones, notably the arcuate nucleus and area postrema.
Indeed, Fos activation in the area postrema was more
strongly induced by peripheral than central exendin-4
administration (Yamamoto et al. 2003). Endogenous
gut-derived GLP-1, with its short circulating half-life, is
unlikely to penetrate the blood–brain barrier, but more
stable GLP-1 analogues appear able to penetrate deeper
regions of the CNS (Kastin et al. 2002; Hunter & Hölscher,
2012)

In addition to the anorexigenic effects mediated via
brainstem–hypothalamic circuits, GLP-1 signalling may
also play a role in food reward and motivation. Glp1r
is expressed in the ventral tegmental area and nucleus
accumbens, areas of the mesolimbic system associated
with feelings of reward and desire. In rats, GLP-1 or
exendin-4 injected peripherally reduced palatable food
intake and reward-motivated behaviour, and this effect
was still seen when exendin-4 was microinjected directly
into the ventral tegmental area (Dickson et al. 2012;
Mietlicki-Baase et al. 2013). In addition, the antagonist
exendin-(9–39) injected into the nucleus accumbens
increased meal size and palatability of sucrose solutions
(Dossat et al. 2013). Interestingly, direct stimulation of
ventral tegmental area GLP-1 receptors in rats also reduced
alcohol intake (Shirazi et al. 2013).

Conclusions

Glucagon-like peptide-1-based therapies are effective
treatments for type 2 diabetes, and mimetics of GLP-1
are under evaluation as anti-obesity agents. As well as
having glucose-lowering effects mediated by the pancreas,
benefits include weight loss and slowed gastric emptying.

Many of the reported actions of GLP-1 are not fully
understood, but recent confirmation of the expression
of glp1r in pancreatic islet cells and the peripheral and
central nervous system will aid the clarification of GLP-1
physiology and pharmacology.

The enhancement of endogenous GLP-1 release to treat
diabetes is an alternative therapeutic strategy currently
under investigation. As enteroendocrine cells are now
recognized to express a spectrum of hormonal mediators,
targeting the gut endocrine system could release a soup of
metabolically active hormones with anorexigenic as well
as incretin effects and mimic some of the physiological
responses to gastric bypass surgery. Analyses of isolated
enteroendocrine cell populations have identified sensory
pathways that might be suitable for pharmacological
targeting. Further insights into the GLP-1-secreting
enteroendocrine cell population and GLP1R expression
and signalling will allow us to exploit the properties of this
gut hormone to the fullest.

Call for comments

Readers are invited to give their opinion on this article.
To submit a comment, go to: http://ep.physoc.org/letters/
submit/expphysiol;99/9/1154
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