7 research outputs found

    Targeting replication-specific DNA repair pathways to enhance the therapeutic ratio of brain tumour radiotherapy

    No full text
    Glioblastoma multiforme is associated with poor prognosis and resistance to standard therapy. However the non-dividing nature of normal brain provides an opportunity for enhancing the therapeutic ratio by combining radiation with inhibitors of replication-specific DNA repair pathways. KU-0059436, an inhibitor of the base excision repair (BER) protein poly(ADP-ribose) polymerase (PARP), was demonstrated to specifically radiosensitise glioma cells during S-phase and to increase lonising radiation (IR)-induced γH2AX and Rad51 foci. This radiosensitisation was enhanced using fractionated radiation, possibly because more cells were exposed to IR whilst in S-phase. A model is proposed whereby PARP inhibition decreases repair of radiation-induced single strand breaks (SSB) which are converted at collapsed replication forks to double strand breaks (DSB) requiring homologous recombination (HR) for repair. To investigate whether inhibition of downstream HR repair potentiates the radiosensitising effect of KU-0059436, and in the absence of specific HR inhibitors, the heat shock protein 90 (HSP90) inhibitor 17-AAG was used. This compound exhibits tumour-specific cytotoxic and radiosensitising properties and downregulates the HR proteins BRCA2 and Rad5l. Work in this thesis confirmed that 17-AAG inhibits HRR and radiosensitises glioma cells. Radiosensitisation was replication-dependent and was increased in the presence of KU-0059436. The combined effect was at least partially replication-dependent, was associated with increased γH2AX foci in G2 cells, and was absent in non-malignant CHO cells. Since Rad5l-depleted cells were also radiosensitised by 17-AAG, this effect could not be attributed entirely to HRR inhibition. 17-AAG inhibits multiple tumour survival and DNA repair pathways that may contribute to its enhancement of the replication-dependent effects of KU-0059436. These multiple mechanisms may be difficult to elucidate but are likely to be therapeutically beneficial. In summary, the combination of HSP90 and PARP inhibitors may potentially improve brain tumour radiotherapy by mechanisms that include but are not restricted to inhibition of the BER and HRR DNA repair pathways.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Enhanced radiosensitization of human glioma cells by combining inhibition of poly(ADP-ribose) polymerase with inhibition of heat shock protein 90

    No full text
    Glioblastoma multiforme (GBM) are the most common primary brain tumor and are resistant to standard therapies. The nondividing nature of normal brain provides an opportunity to enhance the therapeutic ratio by combining radiation with inhibitors of replication-specific DNA repair pathways. Based on our previous findings that inhibition of poly(ADP-ribose) polymerase (PARP) increases radiosensitivity of human glioma cells in a replication-dependent manner and generates excess DNA breaks that are repaired by homologous recombination (HR), we hypothesized that inhibition of HR would amplify the replication-specific radiosensitizing effects of PARP inhibition. Specific inhibitors of HR are not available, but the heat shock protein 90 inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) has been reported to inhibit HR function. The radiosensitizing effects of 17-AAG and the PARP inhibitor olaparib were assessed, and the underlying mechanisms explored. 17-AAG down-regulated Rad51 and BRCA2 protein levels, abrogated induction of Rad51 foci by radiation, and inhibited HR measured by the I-Sce1 assay. Individually, 17-AAG and olaparib had modest, replication-dependent radiosensitizing effects on T98G glioma cells. Additive radiosensitization was observed with combination treatment, mirrored by increases in γH2AX foci in G2-phase cells. Unlike olaparib, 17-AAG did not increase radiation sensitivity of Chinese hamster ovary cells, indicating tumor specificity. However, 17-AAG also enhanced radiosensitivity in HR-deficient cells, indicating that its effects were only partially mediated by HR inhibition. Additional mechanisms are likely to include destabilization of oncoproteins that are up-regulated in GBM. 17-AAG is therefore a tumor-specific, replication-dependent radiosensitizer that enhances the effects of PARP inhibition. This combination has therapeutic potential in the management of GBM. [Mol Cancer Ther 2009;8(8):2243–54

    Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential

    No full text
    Purpose: Current treatments for glioblastoma multiforme are inadequate and limited by the radiation sensitivity of normal brain. Because glioblastoma multiforme are rapidly proliferating tumors within nondividing normal tissue, the therapeutic ratio might be enhanced by combining radiotherapy with a replication-specific radiosensitizer. KU-0059436 (AZD2281) is a potent and nontoxic inhibitor of poly(ADP-ribose) polymerase-1 (PARP-1) undergoing a Phase II clinical trial as a single agent. Methods and Materials: Based on previous observations that the radiosensitizing effects of PARP inhibition are more pronounced in dividing cells, we investigated the mechanisms underlying radiosensitization of human glioma cells by KU-0059436, evaluating the replication dependence of this effect and its therapeutic potential. Results: KU-0059436 increased the radiosensitivity of four human glioma cell lines (T98G, U373-MG, UVW, and U87-MG). Radiosensitization was enhanced in populations synchronized in S phase and abrogated by concomitant exposure to aphidicolin. Sensitization was further enhanced when the inhibitor was combined with a fractionated radiation schedule. KU-0059436 delayed repair of radiation-induced DNA breaks and was associated with a replication-dependent increase in γH2AX and Rad51 foci. Conclusion: The results of our study have shown that KU-0059436 increases radiosensitivity in a replication-dependent manner that is enhanced by fractionation. A mechanism is proposed whereby PARP inhibition increases the incidence of collapsed replication forks after ionizing radiation, generating persistent DNA double-strand breaks. These observations indicate that KU-0059436 is likely to enhance the therapeutic ratio achieved by radiotherapy in the treatment of glioblastoma multiforme. A Phase I clinical trial is in development

    Mammographic surveillance in women younger than 50 years who have a family history of breast cancer: tumour characteristics and projected effect on mortality in the prospective, single-arm, FH01 study.

    No full text
    BACKGROUND: Evidence supports a reduction in mortality from breast cancer with mammographic screening in the general population of women aged 40-49 years, but the effect of family history is not clear. We aimed to establish whether screening affects the disease stage and projected mortality of women younger than 50 years who have a clinically significant family history of breast cancer. METHODS: In the single-arm FH01 study, women at intermediate familial risk who were younger than 50 years were enrolled from 76 centres in the UK, and received yearly mammography. Women with BRCA mutations were not explicitly excluded, but would be rare in this group. To compare the FH01 cohort with women not receiving screening, two external comparison groups were used: the control group of the UK Age Trial (106,971 women aged 40-42 years at recruitment, from the general population [ie, average risk], followed up for 10 years), and a Dutch study of women with a family history of breast cancer (cancer cases aged 25-77 years, diagnosed 1980-2004). Study endpoints were size, node status, and histological grade of invasive tumours, and estimated mortality calculated from the Nottingham prognostic index (NPI) score, and adjusted for differences in underlying risk between the FH01 cohort and the control group of the UK Age Trial. This study is registered with the National Research Register, number N0484114809. FINDINGS: 6710 women were enrolled between Jan 16, 2003, and Feb 28, 2007, and received yearly mammography for a mean of 4 years (SD 2) up until Nov 30, 2009; surveillance and reporting of cancers is still underway. 136 women were diagnosed with breast cancer: 105 (77%) at screening, 28 (21%) symptomatically in the interval between screening events, and three (2%) symptomatically after failing to attend their latest mammogram. Invasive tumours in the FH01 study were significantly smaller (p=0·0094), less likely to be node positive (p=0·0083), and of more favourable grade (p=0·0072) than were those in the control group of the UK Age Trial, and were significantly less likely to be node positive than were tumours in the Dutch study (p=0·012). Mean NPI score was significantly lower in the FH01 cohort than in the control group of the UK Age Trial (p=0·00079) or the Dutch study (p<0·0001). After adjustment for underlying risk, predicted 10-year mortality was significantly lower in the FH01 cohort (1·10%) than in the control group of the UK Age Trial (1·38%), with relative risk of 0·80 (95% CI 0·66-0·96; p=0·022). INTERPRETATION: Yearly mammography in women with a medium familial risk of breast cancer is likely to be effective in prevention of deaths from breast cancer

    Strategies to improve radiotherapy with targeted drugs

    No full text
    Item does not contain fulltextRadiotherapy is used to treat approximately 50% of all cancer patients, with varying success. The dose of ionizing radiation that can be given to the tumour is determined by the sensitivity of the surrounding normal tissues. Strategies to improve radiotherapy therefore aim to increase the effect on the tumour or to decrease the effects on normal tissues. These aims must be achieved without sensitizing the normal tissues in the first approach and without protecting the tumour in the second approach. Two factors have made such approaches feasible: namely, an improved understanding of the molecular response of cells and tissues to ionizing radiation and a new appreciation of the exploitable genetic alterations in tumours. These have led to the development of treatments combining pharmacological interventions with ionizing radiation that more specifically target either tumour or normal tissue, leading to improvements in efficacy
    corecore