32 research outputs found

    Tracking preleukemic cells in vivo to reveal the sequence of molecular events in radiation leukemogenesis

    Get PDF
    Epidemiological studies have demonstrated an increased leukemia incidence following ionizing radiation exposure, but to date, the target cells and underlying mechanisms of radiation leukemogenesis remain largely unidentified. We engineered a mouse model carrying a different fluorescent marker on each chromosome 2, located inside the minimum deleted region occurring after radiation exposure and recognized as the first leukemogenic event. Using this tailored model, we report that following radiation exposure, more than half of asymptomatic CBA Sfpi1GFP/mCh mice presented with expanding clones of preleukemic hematopoietic cells harboring a hemizygous interstitial deletion of chromosome 2. Moreover, following isolation of preleukemic hematopoietic stem and progenitor cells irradiated in their native microenvironment, we identified the presence of Sfpi1 point mutations within a subpopulation of these preleukemic cells expanding rapidly (increasing from 6% to 55% in 21 days in peripheral blood in one case), hence identifying for the first time the presence of such cells within a living animal. Importantly, we also report a previously undescribed gender difference in the phenotype of the preleukemic cells and leukemia, suggesting a gender imbalance in the radiation-induced leukemic target cell. In conclusion, we provide novel insights into the sequence of molecular events occurring during the (radiation-induced) leukemic clonal evolution

    Irradiation-induced telomerase activity and gastric cancer risk: a case-control analysis in a Chinese Han population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomerase expression is one of the characteristics of gastric cancer (GC) cells and telomerase activity is frequently up-regulated by a variety of mechanisms during GC development. Therefore, we hypothesized that elevated levels of activated telomerase might enhance GC risk due to increased propagation of cells with DNA damage, such as induced by Ξ³-radiation.</p> <p>Methods</p> <p>To explore this hypothesis, 246 GC cases and 246 matched controls were recruited in our case-control study. TRAP-ELISA was used to assess the levels of telomerase activity at baseline and after Ξ³-radiation and the Ξ³-radiation-induced telomerase activity (defined as after Ξ³-irradiation/baseline) in cultured peripheral blood lymphocytes (PBLs).</p> <p>Results</p> <p>Our data showed that there was no significant difference for the baseline telomerase activity between GC cases and controls (10.17 Β± 7.21 <it>vs. </it>11.02 Β± 8.03, <it>p </it>= 0.168). However, after Ξ³-radiation treatment, Ξ³-radiation-induced telomerase activity was significantly higher in the cases than in the controls (1.51 Β± 0.93 <it>vs</it>. 1.22 Β± 0.66, <it>p </it>< 0.001). Using the median value of Ξ³-radiation-induced telomerase activity in the controls as a cutoff point, we observed that high Ξ³-radiation-induced telomerase activity was associated with a significantly increased GC risk (adjusted odds ratio, 2.45; 95% confidence interval, 1.83-3.18). Moreover, a dose response association was noted between Ξ³-radiation-induced telomerase activity and GC risk. Age, but not sex, smoking and drinking status seem to have a modulating effect on the Ξ³-radiation-induced telomerase activities in both cases and controls.</p> <p>Conclusion</p> <p>Overall, our findings for the first time suggest that the increased Ξ³-radiation-induced telomerase activity in PBLs might be associated with elevated GC risk. Further confirmation of this association using a prospective study design is warranted.</p

    Aberrant CDKN1A transcriptional response associates with abnormal sensitivity to radiation treatment

    Get PDF
    Normal tissue reactions to radiation therapy vary in severity among patients and cannot be accurately predicted, limiting treatment doses. The existence of heritable radiosensitivity syndromes suggests that normal tissue reaction severity is determined, at least in part, by genetic factors and these may be revealed by differences in gene expression. To test this hypothesis, peripheral blood lymphocyte cultures from 22 breast cancer patients with either minimal (11) or very severe acute skin reactions (11) have been used to analyse gene expression. Basal and post-irradiation expression of four radiation-responsive genes (CDKN1A, GADD45A, CCNB1, and BBC3) was determined by quantitative real-time PCR in T-cell cultures established from the two patient groups before radiotherapy. Relative expression levels of BBC3, CCNB1, and GADD45A 2 h following 2 Gy X-rays did not discriminate between groups. However, post-irradiation expression response was significantly reduced for CDKN1A (P<0.002) in severe reactors compared to normal. Prediction of reaction severity of ∼91% of individuals sampled was achieved using this end point. Analysis of TP53 Arg72Pro and CDKN1A Ser31Arg single nucleotide polymorphisms did not show any significant association with reaction sensitivity. Although these results require confirmation and extension, this study demonstrates the possibility of predicting the severity of acute skin radiation toxicity in simple tests
    corecore